
EAI/Springer Innovations in Communication and Computing

Manju Khari
Deepti Bala Mishra
Biswaranjan Acharya
Ruben Gonzalez Crespo Editors

Optimization
of Automated
Software
Testing Using
Meta-Heuristic
Techniques

EAI/Springer Innovations in Communication
and Computing

Series Editor
Imrich Chlamtac, European Alliance for Innovation, Ghent, Belgium

The impact of information technologies is creating a new world yet not fully
understood. The extent and speed of economic, life style and social changes already
perceived in everyday life is hard to estimate without understanding the technological
driving forces behind it. This series presents contributed volumes featuring the
latest research and development in the various information engineering technologies
that play a key role in this process. The range of topics, focusing primarily on
communications and computing engineering include, but are not limited to, wireless
networks; mobile communication; design and learning; gaming; interaction;
e-health and pervasive healthcare; energy management; smart grids; internet of
things; cognitive radio networks; computation; cloud computing; ubiquitous
connectivity, and in mode general smart living, smart cities, Internet of Things and
more. The series publishes a combination of expanded papers selected from hosted
and sponsored European Alliance for Innovation (EAI) conferences that present
cutting edge, global research as well as provide new perspectives on traditional
related engineering fields. This content, complemented with open calls for
contribution of book titles and individual chapters, together maintain Springer’s and
EAI’s high standards of academic excellence. The audience for the books consists
of researchers, industry professionals, advanced level students as well as practitioners
in related fields of activity include information and communication specialists,
security experts, economists, urban planners, doctors, and in general representatives
in all those walks of life affected ad contributing to the information revolution.
Indexing: This series is indexed in Scopus, Ei Compendex, and zbMATH.

About EAI - EAI is a grassroots member organization initiated through cooperation
between businesses, public, private and government organizations to address the
global challenges of Europe’s future competitiveness and link the European
Research community with its counterparts around the globe. EAI reaches out to
hundreds of thousands of individual subscribers on all continents and collaborates
with an institutional member base including Fortune 500 companies, government
organizations, and educational institutions, provide a free research and innovation
platform. Through its open free membership model EAI promotes a new research
and innovation culture based on collaboration, connectivity and recognition of
excellence by community.

Manju Khari  •  Deepti Bala Mishra
Biswaranjan Acharya  •  Ruben Gonzalez Crespo
Editors

Optimization of Automated
Software Testing Using
Meta-Heuristic Techniques

ISSN 2522-8595	     ISSN 2522-8609  (electronic)
EAI/Springer Innovations in Communication and Computing
ISBN 978-3-031-07296-3     ISBN 978-3-031-07297-0  (eBook)
https://doi.org/10.1007/978-3-031-07297-0

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Editors
Manju Khari
School of Computer & Systems Sciences
Jawaharlal Nehru University
New Delhi, Delhi, India

Biswaranjan Acharya
Department of Computer Engineering-AI
Marwadi University
Rajkot, Gujarat, India

Deepti Bala Mishra
Department of MCA
GITA Autonomous College
Bhubaneswar, India

Ruben Gonzalez Crespo
Computer Science and Technology
Universidad Internacional de La Rioja
La Rioja, Spain

https://doi.org/10.1007/978-3-031-07297-0

v

Preface

Test automation is now ubiquitous, and almost assumed in large segments of the
research. Agile processes and test-driven development are now widely known and
used for implementation and deployment. This book presents software testing as a
practical engineering activity, essential to producing high-quality software. This
book is beneficial for an undergraduate or graduate course on software testing and
software engineering, and as a resource for software test engineers and developers.
This book has a number of unique features:

	1.	 It includes a landscape of test coverage criteria with a novel and extremely sim-
ple structure. At a technical level, software testing is based on satisfying cover-
age criteria. The book’s central observation is that there are few truly different
coverage criteria, each of which fits easily into one of four categories: graphs,
logical expressions, input space, and syntax structures.

	2.	 It projects a balance of theory and practical application, presenting testing as a
collection of objective, quantitative activities that can be measured and repeated.
The theoretical concepts are presented when needed to support the practical
activities that researchers and test engineers follow.

	3.	 It assumes the reader is learning to be a researcher whose goal is to produce the
best possible software with the lowest possible cost. The concepts in this book
are well grounded in theory, are practical, and most are currently in use.

Through this book an effort to in support of the idea of promoting software test-
ing and establishing as to software testing is made possible.

vi

Chapter 1

In Chap. 1, test suite minimization is done with an intention of optimizing the test
suite, and software faults detection and localization as well as adjoining activities
are focused on. In this chapter, code coverage and mutant algorithms are used to
generate the compact test cases on which an algorithm is applied for identifying and
locating errors. To optimize the test cases, NSGA-II algorithm is used. Defects4j
repository has been used for generating and performing tests.

Chapter 2

Chapter 2 focuses on mutation testing, which is the fault-based software testing
approach that is widely applicable for assessing the effectiveness of a test suite. The
test suite effectiveness is measured through artificial seeding of faults into the pro-
grams under test. Six open-source mutation testing tools and JAVA-based MTT
(Jester, Javamut, MuJava, Jumble, Judy, and Javalanche) are analyzed. The results
are based on the performance of various JAVA programs and two real-life applica-
tions. Benchmark comparison among the MTT is presented in terms of mutants,
mutation operator, mutation score, and quality output.

Chapter 3

In Chap. 3, the authors present MBT and state-based test case generation using a
state chart diagram. Firstly, the authors review the main concepts and techniques in
MBT. Then, in the next step, they review the most common modeling formalisms
for state chart diagram, with focus on various state-based coverage criteria.
Subsequently, the authors propose methods for a synchronous state-based testing
approach to generate test cases.

Chapter 4

In Chap. 4, the Author designed and developed a TCP technique to enhance the fault
detection rate of test cases at the early execution of the test suite. The developed
algorithm was examined with two benchmark algorithms on four subject programs
to evaluate the performance of the algorithm. APFD metrics are used as perfor-
mance evaluation metrics and the performance of the developed algorithm outper-
forms both of the benchmark algorithms.

Preface

vii

Chapter 5

In Chap. 5, authors analyze the already available and enhanced testing techniques
for the improved and good quality product. Some recent research studies have been
summed up in this work as software testing is acquiring more significance these days.

Chapter 6

In Chap. 6, authors identify and analyze an existing research paper previously con-
ducted by different researchers on predicting software reliability using a machine
learning approach in the context of formulated research questions.

Chapter 7

In Chap. 7, a systematic approach to finding bugs means errors or different other
defects in a running application which are ready to tested. It also helps to analyze
the actual programs and to lower the cost of finding errors. And different EAs like
GA-, PSO-, ACO-, and ABCO-based methods have been already proposed to gener-
ate the optimized test cases.

Chapter 8

Chapter 8 represents a use case of optimization of software testing in different wire-
less sensor network applications. The survey in the paper also shows that the use of
a metaheuristic is not limited to WSN, and the use of a metaheuristic in automated
software testing is exemplary. In the field of software testing, optimization of test
cases and increasing usability are a few tasks that can be optimized with the help of
metaheuristic algorithms.

Chapter 9

In Chap. 9, the author develops my CHIP-8 emulator for software testing strategy
for playing online games on many platforms. The author lists each instruction
explaining what it does and how it carries out it while providing the detailed docu-
mentation of our CHIP-8 emulator and thus, providing metaheuristic high-level
solutions to fix them.

Preface

viii

Chapter 10

Chapter 10 describes defects maintainability prediction of the software. This chap-
ter evaluates the mentioned scenario by using maintainability index and defect data.
The maintainability index is computed using the object-oriented metrics of the
software.

Chapter 11

The book ends with Chap. 11, which develops a hybrid metaheuristic encryption
approach employing software testing for secure data transmission named
EncryptoX. The main objective behind doing this project report is to gain skills and
knowledge regarding various cryptography and storage techniques used in software
testing.

New Delhi, India� Manju Khari
Bhubaneswar, India� Deepti Bala Mishra
Rajkot, Gujarat, India� Biswaranjan Acharya
La Rioja, Spain� Ruben Gonzalez Crespo

Preface

ix

Contents

��NGA-II-Based Test Suite Minimization in Software�������������������������������������     1
Renu Dalal, Manju Khari, Tushar Singh Bhal, and Kunal Sharma

��Comparison and Validation of Mutation Testing Tools Based
on Java Language���    13
Manju Khari

��State Traversal: Listen to Transitions for Coverage Analysis
of Test Cases to Drive the Test���    31
Sonali Pradhan, Mitrabinda Ray, Sukant Bisoyi, and Deepti Bala Mishra

��A Heuristic-Based Test Case Prioritization Algorithm
Using Static Metrics ���    45
Daniel Getachew, Sudhir Kumar Mohapatra, and Subhasish Mohanty

��A Literature Review on Software Testing Techniques�����������������������������������    59
Kainat Khan and Sachin Yadav

��A Systematic Literature Review of Predicting Software Reliability
Using Machine Learning Techniques ���    77
Getachew Mekuria Habtemariam, Sudhir Kumar Mohapatra,
Hussien Worku Seid, and Deepti Bala Mishra

��Evolutionary Algorithms for Path Coverage Test Data Generation
and Optimization: A Review ���    91
Dharashree Rath, Swarnalipsa Parida, Deepti Bala Mishra,
and Sonali Pradhan

��A Survey on Applications, Challenges, and Meta-Heuristic-Based
Solutions in Wireless Sensor Network���   105
Neha Sharma and Vishal Gupta

x

��myCHIP-8 Emulator: An Innovative Software Testing Strategy
for Playing Online Games in Many Platforms���   133
Sushree Bibhuprada B. Priyadarshini, Amrut Mahapatra,
Sachi Nandan Mohanty, Anish Nayak, Jyoti Prakash Jena,
and Saurav Kumar Singh Samanta

��Defects Maintainability Prediction of the Software���������������������������������������   155
Kanta Prasad Sharma, Vinesh Kumar, and Dac-Nhuong Le

��EncryptoX: A Hybrid Metaheuristic Encryption Approach
Employing Software Testing for Secure Data Transmission�������������������������   167
Sushree Bibhuprada B. Priyadarshini, Aayush Avigyan Sahu,
Vishal Ray, Padmalaya Ray, and Swareen Subudhi

�Index���   183

Contents

1

NGA-II-Based Test Suite Minimization
in Software

Renu Dalal, Manju Khari, Tushar Singh Bhal, and Kunal Sharma

1 � Introduction

Developing software is one of the major works that is being done in the industry in
this era of technology. For developing software one of the major tasks is testing for
errors and issues. Running the complete test suite without minimizing is a tedious
job as it will induce a big load on the system and the operation under execution. Test
case minimization is one of the options to reduce the test suite. For testing purposes,
the first step is to create test suites in which some operations are defined or a set of
information in which the software has to perform and the results of which describe
the ability of the software to perform under that kind of task.

But after creation of a test suite, the next step is to minimize the test suite as it
can contain many redundant and faulty tests which have to be removed to improve
the efficiency of the testing. The load on the machine gets reduced if proper mini-
mization is done. Test case minimization is used to getting the compacted test case.
This aids in testing that modification done in software program has not affected the
unmodified part of the software. Identifying and locating errors is one of the major
tasks which has to be done to minimize the test suite. But performing them at the
same time is a different issue as they are subsequent activities. At first, fault detec-
tion in the test suite using failing test cases is done, and then localization is done by
using the pass and fail information of the test suit.

R. Dalal (*)
Department of Information Technology, MSIT, GGSIP University, Delhi, India

M. Khari
School of Computer and Systems Sciences, Jawaharlal Nehru University, Delhi, India

T. S. Bhal · K. Sharma
Department of Computer Science, AIACT & R, GGSIP University, Delhi, India

© Springer Nature Switzerland AG 2022
M. Khari et al. (eds.), Optimization of Automated Software Testing Using
Meta-Heuristic Techniques, EAI/Springer Innovations in Communication and
Computing, https://doi.org/10.1007/978-3-031-07297-0_1

https://doi.org/10.1007/978-3-031-07297-0_1

2

Software testing is one of the major processes in all the SDLC phases present.
Testing takes a lot of time and resources present at our end. Research says that in
about 50% of the total time given in development, 25% of it should be given only to
debugging. Test suite minimization helps in this process by reducing the time and
computing power applied on the tasks. As both detecting and localizing faults
should be performed one after another if we can combine these processes, this can
significantly reduce the work and load applied. The aim of this chapter is to achieve
greater efficiency as possible in minimizing and to achieve better CPU utilization,
memory utilization, and disk usage.

A software always gets updated, and new functionality is added from time to
time due to which new test cases are added in the test suite. After some updates,
there are some test cases which are no longer needed and are an overhead over the
system, so they have to be removed or should not be considered that is why it is a
must to perform minimization over the test suite. It also becomes easy to detect
faults in the minimized suite. As mentioned above, the detection and localization
tasks are done one after another. Combining them is a difficult process but essential
as performing the in concurrently takes more time and usage of other resources. For
combining them offline techniques can be used. The reduced test suite obtained
after these processes can be used for regression testing. Vidács et al. and many other
researchers work on this approach. They proposed an approach for combining both
these processes and minimizing the test suite.

For doing all this, multi-objective optimization algorithms come into play. Multi-
objective optimization algorithm deals in the domain of optimization problems
where multiple objective functions are optimized. The solution obtained is known
as non-dominated, Pareto adequate or non-inferior, and Pareto optimal, if none of
the objective functions can enhance the value without deteriorating the other objec-
tive values. An assessment is done in this study on projects taken from Defects4J
repository [1–3]. This assessment is performed by using NSGA-II, coverage, and
mutation algorithms. The main reason for undertaking minimization is:

•	 To reduce time for testing purpose
•	 Less system requirement
•	 Redundant test case elimination
•	 To predict faults easily

2 � Background

2.1 � What Is Test Suite?

Test suite is a collection of tests which helps testers in executing and performing
testing and reporting faults and errors present in the software. A single test case can
be added to many test suites. A test suite consists of many test cases which describe

R. Dalal et al.

3

the various conditions which the software has to encounter while being operated. It
can also be defined as a collection of scenarios which define the scope of testing for
a given execution environment.

Test suites are used for identifying gaps in testing efforts where successful com-
pletion of a test case can occur before the next step begins. Test suites are also useful
like build verification test, smoke test, end-to-end integration test, and functional
verification test.

A test suite can divide into three types:

•	 Static Suite: In this suite, creation of a collection of named scenarios will remain
static once defined. In this type sequence of execution is always guaranteed. The
order of execution is defined in this type of suite.

•	 Filter-Based Suite: In this suite, custom sets of fields are defined using filter
parameters. This type of suite is used for targeted testing of specified portions.

•	 Requirement-Based Suite: Here test suite is created based on the user require-
ments. This is mostly used in agile environments.

2.2 � Minimization of Test Suite

A test suite contains a huge amount of test cases, and executing them is an annoying
task. Many researches have been done to minimize this annoying task. A test suite
is minimized by removing the redundant test cases and removing those cases which
are no longer needed, or the functionality has been removed in the updated version
of the software [4].

2.3 � Partitioning

Partitioning can be divided into classes into equivalent partitions. This idea is based
on the concept of equivalence partition in set theory. These partitions are undistin-
guishable. Majorly two types of partitions are accessible: statement partitioning and
mutation partitioning. Statement partitioning is based on the code coverage. It
means portioning the code segment on the basis of their code coverage information
into diverse classes. Mutant partitioning is another type of partitioning method in
which the mutants are partitioned on the basis of their kill information by test cases.
Mutants can be partitioned into various partitions, for measuring this a factor d-score
is introduced by the researchers, it provides the information of number of mutants
differentiate by the considered test-cases [5].

NGA-II-Based Test Suite Minimization in Software

4

2.4 � Optimization Algorithms

Optimization algorithms are used for optimizing test cases. These algorithms are
used to reduce the test suite size and to produce results which can be used further in
multi-objective tasks. There are many optimization algorithms present. It can
broadly be classified into two categories, that is, single objective and multi-objective
[6]. Multi-objective includes NSGA-II, NSGA-III, MO-PSO, MO-BAT, etc.

3 � Defects4J

3.1 � About Defects4J Repository

Defects4J is a repository which contains a collection of reproducible bugs which is
used for advancing software research. Defects4J consists of many projects, and
there are many versions of each project which can be used to generate test suites of
various types. It contains 835 bugs from many open-source projects like Chart, Cli,
Closure, Math, Time, Csv, etc. Test suites are generated by using some generator
functions and then providing a version of the project. It also provides the support for
integrating any methods of applying algorithms outside the repository scope. It
comes with the support of applying basic coverage and mutation algorithms [7].
Defects4J comes with basic functionality like performing checkout and compiling
and performing testing on a test case.

4 � Code Coverage

The code coverage is a metric that illustrates the extent of the source program code
that has been tested. It is a part of white box testing. It is used to determine the
quantitative measure of the code. It generates the result of the test suite’s code cov-
erage. There are many reasons why we use code coverage, and some of them are to:
(1) Offers Quantitative measurements. (2) Describes the extent to which the code is
tested. (3) Calculate test implementation efficiency [8–10]. There are many tech-
niques in which code coverage can be performed such as:

•	 Decision coverage
•	 Statement coverage
•	 Toggle coverage
•	 Branch coverage
•	 FSM coverage

In this chapter statement and branch coverage are used.

R. Dalal et al.

5

4.1 � Statement Coverage

Statement coverage involves execution of all the executable statements in the source
code at least once. It is white box testing technique. It is used to calculate the num-
ber of statements which can be executed on the given requirements. Here as a part
of white box testing, the aim is to understand the working of the code at internal
levels. Its main goal is to include all the finite routes, lines, and statements present
in the source code. Maximization of statement coverage intends to discover the
minimized test case and can enhance its value. The statement coverage metric is
defined as Eq. 1:

	

SC
s M s T

M
�

�� �covered by

	 (1)

Here, |M| means total number of statements present in the source program.

4.2 � Branch Coverage

The outcome of the code module is tested in branch coverage. Branch coverage’s
main goal is to make sure every possible branch is tested. It tells us about the inde-
pendent code segments present in the codes [11]. The branch coverage ensures that
every section of each control structure may be examined at least once.

Maximization of branch coverage helps in finding the minimized test case, and it
maximizes the value of branch coverage. The metric of branch coverage is repre-
sented in Eq. 2.

	

Branchcover
covered by

�
�� �b P b T

P
	 (2)

Here, |P| represents the total number of branches in the code.

5 � Proposed Approach

5.1 � Workflow of Approach

Test suite minimization is required in software for the same the proposed approached
in represented in the Fig. 1

NGA-II-Based Test Suite Minimization in Software

6

Fig. 1  Workflow of
proposed approach

5.2 � Optimization NSGA-II Algorithm

NSGA II is the multi-objective algorithm which comes in the class of optimization.
It stands for elitist non-dominated sorting genetic algorithm. This algorithm is both
elitism preserving and diversity preserving. Elitist means it keeps the best solution
for the next iteration from the current one. Non-dominated searching means if there
are two individuals A and B, A dominates to B, if and only if there is no objective of
A worse than that objective of B and there is at least one objective of A better than
that objective of B. The objective of non-dominated sorting is to find out which
individual belongs to which front. Mathematically domination is:

A(x_1, y_1) dominates B(x_2, y_2) when : (x_1<=x_2 and y_1<=y_2) and
(x_1<x_2 or y_1<y_2)

One of the fronts may not fit properly in the size of the parent population as
before for this crowding distance is used. To keep a good spread in NSGA-II and
avoid local maxima or minima, crowding distance decides which individuals are
added to the new population. Individuals with higher crowding distance are picked
first. After this new offspring is created which has the same size as the parent. This
process happens in three phases tournament selection, crossover, and finally muta-
tion. All this happens for some iterations, and then the result is taken.

R. Dalal et al.

7

Pseudo Code of the Algorithm

 Fast sNon-Dominated Sort:

 for every p ∈P
 S_p = Φ
 n = 0
 for every q∈P
 if q<p then
 S_p = S_p ∪{q}
 else if q<p then
 n = n +1
 if n = 0 then
 p_rank = 1
 F_1 = F_1∪{q}
 i = 1
 while F_i ≠Φ
 Q = Φ
 for every q∈F_i
 for every q∈S_p
 n_q = n_q -1
 if n_q = 0
 q_rank = i+1
 Q = Q∪{q}
 i = i + 1
 F_i = Q

 Crowding_Distance_Assignment

 l = | I |
 for every i, set I[i] dist = 0
 for every objective m
 I = sort(I, m)
 I[1]dist = I[1]dist = ∞
 for i = 2 to (l-1)
 I[i]dist = I[i]dist + (I[i+1].m - I[i-1].m)/
(fmax_m - fmin_m)

 Final_Step

 R_t = P_t∪Q__t
 F = Fast_Non_Dominated_Sort(Rt)

NGA-II-Based Test Suite Minimization in Software

8

Table 1  Project and version chosen with number of bugs present in each

Identifier Project-name No. of bugs Active bugs ID

Lang Commons-lang 64 1,3–65
Closure Closure-compiler 174 1-62,64-92,94-0
Time Joda-time 26 1–20, 22–27

 P_t+1 = Φ and i = 1
 until | P_t+1 | + | F_i | ≤ N

 Crowding_Distance_Assignment(Fi)

 P_t+1 = P_t+1∪F_i
 i = i+1
 Sort(F_i, <n)
 P_t+1 = P_t+1∪F_i[1: (N- | P_t+1|)]
 Q_t+1 = make-new-pop(P_t+1)
 t = t+1

5.3 � Performing Coverage and Mutation

There are many projects and versions present in the Defects4J repository. This table
shows the details of the work with their versions, number of bugs present in them,
and active bugs ID. Table 1 shows projects used from the Defects4J repository.

Coverage task was performed on a shell in Linux. First, set a path of Defects4J
in the terminal so that the system can understand where to look for commands. Now
take the created test suite and checkout using the checkout command. This creates
an executable folder where the data goes and stays for execution. After that perform
coverage from the function coverage. This will perform coverage on the selected
project. At the end it gives us the number of statements it covered and removes those
redundant cases.

6 � Results and Analysis

6.1 � Result Obtained

After performing the experiments, the test suite was minimized. The images above
show the reduction in the test suite as the number of test cases which were being
covered earlier was more than being covered now by the same algorithm. It means
that the redundant test cases were removed from the suite. It can be seen properly in
each project taken by this work. This means that the approach taken was a success-
ful one. Projects are Lang Project represented in Figs. 2 and 3; then Time project
results represented in Figs. 4 and 5; and closure project results depicts in Figs 6 and 7.

R. Dalal et al.

9

Fig. 2  Statement coverage for the Lang project

Fig. 3  Branch coverage for the Lang project

Fig. 4  Statement coverage for the time project

Fig. 5  Branch coverage for the time project

Fig. 6  Statement coverage for the closure project

NGA-II-Based Test Suite Minimization in Software

10

Fig. 7  Branch coverage for the closure project

6.1.1 � Graphs

Graphs represent the amount of coverage percentage after applying the algorithms.
X-axis of the graph represents the test suite related to a specific bug, and Y-axis
represents the coverage percentage. Blue dots represent complete test suite cover-
age, and red dots represent coverage after reducing the suite. For each project there
are two graphs, one for statement coverage and the other for branch coverage.

Lang Project

Time Project

Closure Project

6.2 � Errors Occurred

While performing mutation on the projects, it was encountered that the mutants
generated were not yielding the results as we expected. The mutants which could
have given us better results were killed while mutation testing. The Defects4J repos-
itory has a built-in operation for creating mutants and performing mutation testing,
and it was tried, but didn’t work and gave some error. To resolve this, select the
issues section of the repository, and it was found that there was this problem still
unsolved. Then creating some mutants in the project still didn’t work. Due to all
these errors, the second set which was supposed to pass through the NSGA-II algo-
rithm was not generated. So, it passed the only generated suite through the algo-
rithm, by dividing it into two separate halves. The results were unexpectedly low.
Due to this problem, the coverage part was performed, and the final validation step
was skipped. Still the results were not that bad. The test suite was reduced to
some extent.

R. Dalal et al.

11

7 � Conclusion and Future Work

Software which have a lot of functionalities require a big test suite for testing pur-
poses. So, test suite minimization is done. And with this minimization it becomes
easy for a tester to identify and locate software faults present in the code. Here the
purpose was to minimize that test suite and correctly detect and localize the faults
present in the software. The approach included coverage, mutation, and then per-
forming optimization using genetic algorithms. The average percent of test suite
reduction achieved was only 62% as one of the parts didn’t work properly as
expected, if it would have then it was expected to achieve an accuracy of 72%. In
future work, it is necessary to implement the mutation testing part which could have
improved the accuracy further. So, it can implement that functionality for increasing
the scores further. With developing technology and new nature-inspired algorithms
coming in picture, this domain is getting more and more scope of enhancement.

References

1.	Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiob-
jective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2),
182–197.

2.	Khari, M., Dalal, R., & Rohilla, P. (2020). Extended paradigms for botnets with WoT applica-
tions: A review. Smart Innovation of Web of Things, 105.

3.	Khari, M., Dalal, R., Misra, U., & Kumar, A. (2020). AndroSet: An automated tool to create
datasets for android malware detection and functioning with WoT. Smart Innovation of Web
of Things, 187.

4.	Correia, D., Abreu, R., Santos, P., & Nadkarni, J. (2019). MOTSD: A multi-objective test
selection tool using test suite diagnosability. In Proceedings of the 2019 27th ACM joint meet-
ing on European software engineering conference and symposium on the foundations of soft-
ware engineering (pp. 1070–1074).

5.	 Just, R. (2014). The Major mutation framework: Efficient and scalable mutation analysis for
Java. In Proceedings of the 2014 international symposium on software testing and analysis
(pp. 433–436). ACM.

6.	Nature Inspired Algorithm: Nature-Inspired Metaheuristic Algorithms by Xin-She Yang. https://
www.researchgate.net/publication/235979455_Nature-Inspired_Metaheuristic_Algorithms

7.	Defects4j. https://github.com/rjust/defects4j
8.	Cobertura. http://cobertura.sourceforge.net/
9.	Mutation tool MAJOR. https://mutation-testing.org/doc/

10.	Code Coverage. https://www.guru99.com/code-coverage.html
11.	Mutation testing. https://www.guru99.com/mutation-testing.html

NGA-II-Based Test Suite Minimization in Software

https://www.researchgate.net/publication/235979455_Nature-Inspired_Metaheuristic_Algorithms
https://www.researchgate.net/publication/235979455_Nature-Inspired_Metaheuristic_Algorithms
https://github.com/rjust/defects4j
http://cobertura.sourceforge.net/
https://mutation-testing.org/doc/
https://www.guru99.com/code-coverage.html
https://www.guru99.com/mutation-testing.html

13

Comparison and Validation of Mutation
Testing Tools Based on Java Language

Manju Khari

1 � Introduction

Mutation testing is the testing approach that introduces errors by making simple
artificial modifications into source code. The introduction of artificial modification
is based on a protocol that is called mutant operators. The effectiveness of a test
suite in indicating a program change is essential for software testing. Few test cases
are more effective than the others, but it is complicated task to identify them. The
test can be “good” in the way that it is able of identifying each error that no other
test can, but it is complicated to determine because the exposing error is not existing
in the code. Otherwise, the test may be “poor” in the way that it is not able to deter-
mine any modification, but again this is difficult to detect because authors don’t
know if any modification is existing in the source code. In each case, there is no
technique which can identify the effectiveness of test cases [19]. The author pro-
posed the mutation testing to produce the way of iteratively enhancing test data
ability with respect to some program under test (PUT) [1]. The effectiveness out-
come of mutation testing is measured when increasing the accuracy of the test data
enhanced the tester’s confidence in the accuracy of the PUT [27]. Authors have
compared and analyzed the performance of six existing open-source MTTs. The
results have been validated using 20 JAVA programs along with two real-life appli-
cations. The programs were executed on JAVA-based open-source MTTs, and the
results were theoretically and experimentally analyzed. The authors highlight prac-
tical concepts in an interpreted form that should be effective for both professionals
and scientists involved in using mutation tools for mutation testing.

The organization of this chapter includes the following: Sect. 2 describes the
related work in the area of mutation testing. Section 3 provides a formulation of

M. Khari (*)
School of Computer and Systems Sciences,
Jawaharlal Nehru University, Delhi, India

© Springer Nature Switzerland AG 2022
M. Khari et al. (eds.), Optimization of Automated Software Testing Using
Meta-Heuristic Techniques, EAI/Springer Innovations in Communication and
Computing, https://doi.org/10.1007/978-3-031-07297-0_2

https://doi.org/10.1007/978-3-031-07297-0_2

14

research questions. Section 4 presents empirical data collection. Section 5 analyzes
the results with the solution of formulated research questions which include descrip-
tive statistics and major issues to be considered while working on open-source
mutation testing tools. Section 6 presents the conclusion of the research and projects
future scope of this work.

2 � Related Work

Mutation testing is the approach which is applicable to determine the thoroughness
of the test cases by evaluating the limit to which the test suite can discriminate the
program from slight variations of the program. The successful automation of muta-
tion testing leads to decrease in the cost; therefore, it permits mutation testing to be
easily capable and effective. The idea of change testing was presented in 1971 in
Richard Lipton’s research project titled “Fault Diagnosis of Computer Programs.”
Mutation testing got mainstream in the late 1970s and early 1980s; however, it
failed to make the polished product in the industry. Although mutation has appeared
very powerful [1–6], it has been unluckily to prove that it is most demanding (high
on cost) in the way to produce and execute the mutated programs.

To decrease the final cost, diverse mutation schemes have been introduced in past
years considering the respective view. The technique, called “mutant schemata,”
aims to decrease the production and assortment amount of the generated code [7].
Mostly progress in this field has been explored by DeMillo and Offutt [8], and this
progress has been shown in the technique called “constraint-based testing.” Various
recent advances in mutation testing are symbolic execution [9], concolic execution
[10], and search-based optimization techniques [11].

In 2006, Youssef et al. presented a functional verification which contributed to
reducing the cost of hardware design flow. This new approach combined mutation-
based test techniques and genetic algorithm [24]. In 2009, Schuler et al. presented a
flexible approach for benchmarking of mutation testing strategies using tools and
concluded not only on effectiveness but also on a comparison of different testing
strategies [15].

In 2011, Ferrari et al. discussed three issues associated with the use of mutation
investigation and proposed a new model to replace the issue of current faults mod-
els. The three tools AjMutator, Proteum/AJ, and MuJava were used for mutation
analysis [25]. In 2012, Papadakis described a test case generation method via path
selection to kill mutant and analyze mutant. In the same year, artificial insertion of
faults under SUT was performed by means of a set of mutation operators along with
the empirical study of different combined strategies [18]. In 2012, Kim et al.
described the simulation based on JAVA mutation tool, that is, MuJava. Also, in
2012, Dabas et al. considered JAVA as the base language to test the code in mutation
testing, and they also used class operators and method operators.

In 2013, a major architecture for mutation analysis and fault seeding technique
gives the compiler integrated mutation analyzer for JUnit implementation [13].
Aichernig et al. designed a new model-based test data generation that derives data

M. Khari

15

from the UML state machine [30]. In 2015, Nanavati et al. proposed two new muta-
tion killing criteria, memory fault identification and the control flow deviation,
which are useful in decreasing the number of survived mutants [28]. Li et al. imple-
ment mutation testing on Ruby programming and develop eight new mutation oper-
ators for a Medidata project within an agile development sprint [29, 33, 34].

3 � Formulation of Research Questions

Test data generation is very crucial for any software testing. Some of the techniques
for generating test data are based on program specifications (known as functional
testing) including equivalence class testing, random testing, etc.; on the other hand,
others are on the bases of the information about the program code (known as struc-
tural testing), including path testing, branch testing, and data flow testing. The test
cases were generated on the basis of data flow testing and boundary value analysis
of the program. These test cases were applied on 20 JAVA programs and two real-
life applications using six JAVA-based MTTs. Finally, the results of these tools
(Jester, JavaMut, MuJava, Jumble, Judy, and Javalanche) were compared and vali-
dated with the following research questions mentioned in Table 1. Based on the
experimental analysis of MTTs, the authors were able to find the best MTT among
the selected tools.

4 � Empirical Data Collection

This research is based on 20 JAVA programs and two real-life applications. Authors
have analyzed and compared the six open-source JAVA-based MTT on the basis of
their theory and four quality parameters including memory usage, CPU utilization,
mutation score, and the time taken per mutant to kill a fault. The primary commit-
ment of this paper is to look at the flaw’s recognition capacity of the test suites. The
flaws may be naturally created, or they can be genuine shortcomings. Authors pro-
duced mutants from the JAVA programs utilizing a set of standard change mutation
operators from the literature on mutation testing.

Table 1  List of research questions

Research questions

RQ1 which MTT, that is, jester, JavaMut, MuJava, jumble, Judy, and Javalanche, is better based
on the theoretical comparison?
RQ2 how many operators are supported by each MTT?
RQ3 which MTT is the best in terms of quality, parameters such as memory usage, CPU
utilization, mutation score, and the time it took per mutant to kill a fault?
RQ4 what is the statistical evidence to prove the best tool among the six MTT?
RQ5 what are the major issues to be considered while working on six JAVA-based MTT?

Comparison and Validation of Mutation Testing Tools Based on Java Language

16

Table 2  List of programs

S. No. Program description S. No. Program description

P1 Fibonacci series P12 Sum of two numbers
P2 Reverse of a number P13 Prime number next to given number
P3 To find a number is prime or not P14 Square root of a number
P4 Factorial P15 Sum of digits
P5 Program to sort an array P16 Convert temperature from Fahrenheit to

Celsius
P6 Print numbers starting from 1 to given

number
P17 To find area circumference of circle

P7 Display five numbers randomly P18 Perimeter of a rectangle
P8 Greater of two numbers P19 Display digits of a number
P9 Greatest of three numbers P20 Area of a rectangle
P10 Convert uppercase letters to lowercase

and vv
App1 Small text information system

P11 Sum and average of array elements App 2 Algebraic application

The result suggests that produced mutants were complimentary to real errors, but
it is distinct from hand-seeded errors. Also, hand-seeded errors are complicated to
identify than real errors. If the output produced from the mutated program is differ-
ent than the actual output, the mutant is considered killed, or else it is considered
alive, that is, live/equivalent. The representation of the six tools throughout the
paper is Jester as T1, JavaMut as T2, MuJava as T3, Jumble as T4, Judy as T5, and
Javalanche as T6. Table 2 enlists the considered JAVA programs and the real-time
applications. The JAVA programs and applications contain approximately 35–1000
lines of source code.

The applications are collected from two different repositories. App 1 is an exam-
ple of Web application: Small Text Information System (STIS). The source code for
app 1 is freely available at [32]. STIS is a nontrivial web application to support users
to keep a trail of random textual information. It keeps all the data in the database
(MySQL), and it is a combination of 18 JAVA Server Pages and 6 JAVA bean classes.
App 2 is available at [33]. This application is named as an algebraic application to
give information about the roots of the quadratic expressions. It comprises of two
methods: one is a rootFinder with one argument for accepting the discriminant
value, and the other is a calDiscriminant with three arguments for accepting con-
stants a, b, and c. It also involves test class TestQuadRoots to kill generated mutants.
This test class has two methods: testRootFinder and testCalDiscriminant.

5 � Analysis of Results

This section illustrates the output of mutation analysis, addressing each research
question mentioned in Sect. 4.

RQ 1. Based on the theoretical analysis, which MTT, that is, Jester, JavaMut,
MuJava, Jumble, Javalanche, and Judy, is better?

M. Khari

17

MTT provides automation to manual mutation testing process which has heavy
execution cost. The mutation tools are depending on language because they help
mutation operators for the particular programming language. Mothra MTT [12]
based on FORTRAN [16], Proteum MTT [13] on C [17] and C++, Jester, and Judy
on JAVA [22] and MTTs on Oracle [23] are examples of mutation tool. Our aim is
to focus on JAVA language-based mutation testing tools. Authors explore various
tools based on mutation testing, but authors found that only a few tools are available
as open-source and rest tools like insure++, Certitude, etc. are either commercially
licensed or not easily accessible.

T1 [6] is basic JAVA MTT it uses a content based discover and reconstitute
approach for producing mutants. T2 [21] was the first executions of the pure JAVA-
based mutation framework. It focuses on the JAVA sentence structure and backing
mutation operators for object-oriented features and for the conventional mutation
operators. T3 [14] supplements T2 tool with extra change mutation operators for
JAVA language. Likewise, it backs both area and execution of mutants and addition-
ally gives an instinctive GUI. To decrease the area and simulation amount, one of
the T3 forms handles bytecode specifically and utilizes the mutant schemata Scheme
[7]. Test cases are provided in a particular configuration, particularly as a JAVA
class that holds one technique for every test. Each one test system gives back a
string that is utilized to contrast the yields of mutants and the yields of the first class.

There is other JAVA MTT that supports JUnit test cases: Testooj, Jumble, Judy,
and Javalanche. The Testooj is the test data production tool for JAVA-based lan-
guage. It coordinates a few existing testing devices including T3, and it permits T3
to utilize JUnit test cases. T4 [3] specifically handles bytecodes to accelerate muta-
tion testing. Notwithstanding, with the exception of producing mutants, it utilizes
the same approach as T5. Likewise, it doesn’t help class mutation operators. T5 [4]
utilizes aspect-oriented mechanisms to stay away from various assemblages of
mutants. This executes both traditional and class mutation operators. T6 [15] is a
moderately novel JAVA-based mutation tool. It receives a few expense diminish-
ment approaches. For instance, it controls bytecode specifically and utilizes a
mutant schemata procedure [17]. Also, it executes just those test cases that are well
known to cover the mutated statement by using coverage data.

Table 3 provides a comparison of the MTTs in terms of year of introduction,
generation of tools, the number of traditional and class operator supported, GUL/
CUI category, and their JUnit support availability and key characteristics.

RQ 2. How many operators are supported by each MTT?

Each MTT has different sets of mutant operators. In literature five types of muta-
tion operators are available, namely, conventional mutation operators, class muta-
tion operators, state-based mutation operators [22], method level mutation operators,
and mutation operators for JAVA-based specific features. T3 is considered to be the
best as it supports a wide range of operators like five traditional operators, 24 class
level operators, and method level operators [26]. A detailed comparison of all the
six tools is mentioned in Table 3. Table 4 includes a lists of the mutation operators
supported by selected MTTs and their abbreviations.

Comparison and Validation of Mutation Testing Tools Based on Java Language

18

Ta
bl

e
3 

C
om

pa
ri

so
n

of
 s

ix
 m

ut
at

io
n

te
st

in
g

to
ol

s
ba

se
d

on
 J

A
V

A
 la

ng
ua

ge

To
ol

Y
ea

r
of

in

tr
od

uc
tio

n
G

en
er

at
io

n
N

o.
 o

f
tr

ad
iti

on
al

op

er
at

or
s

N
o.

 o
f

cl
as

s
op

er
at

or
s

M
ut

an
t f

or
m

at
G

U
I/

C
L

I
JU

ni
t

su
pp

or
t

C
ha

ra
ct

er
is

tic
s

T
1

[6
]

20
01

So
ur

ce
2

N
il

Se
pa

ra
te

 s
ou

rc
e

fil
es

G
U

I
JU

ni
t4

Pr
od

uc
ed

 w
eb

 p
ag

es
 d

is
pl

ay
in

g
th

e
ou

tp
ut

s
of

 th
e

te
st

s
by

 u
si

ng
 th

e
bu

ilt
-i

n
sc

ri
pt

T
2

[2
0]

20
02

So
ur

ce
6

20
In

 s
ep

ar
at

e
cl

as
s

fil
e

C
L

I
JU

ni
t3

Fi
rs

t f
ul

ly
 fl

ed
ge

d
JA

V
A

 m
ut

at
io

n
sy

st
em

, b
as

e
of

 M
uJ

av
a

T
3

[1
4,

 2
0,

21

]
20

05
So

ur
ce

5
24

Se
pa

ra
te

 c
la

ss

fil
e

G
U

I
JU

ni
t3

W
ea

k
m

ut
at

io
n,

 m
ut

an
t s

ch
em

at
a,

re

fle
ct

io
n

te
ch

ni
qu

e
T

4
[3

]
20

07
B

C
E

L
7

N
il

In
 m

em
or

y
G

U
I

JU
ni

t4
C

la
ss

 le
ve

l m
ut

at
io

n
te

st
in

g
to

ol
T

5
[4

, 3
1]

20
10

So
ur

ce
5

7
G

ro
up

ed
 in

so

ur
ce

 fi
le

s
G

U
I

JU
ni

t4
Su

pp
or

t f
or

 th
e

la
te

st
 v

er
si

on
 o

f
JA

V
A

,
tr

ad
iti

on
al

 a
nd

 c
la

ss
 m

ut
at

io
n

op
er

at
or

s
T

6
[1

5]
20

09
A

SM
5

N
il

Se
pa

ra
te

 c
la

ss

fil
e

G
U

I
JU

ni
t4

In
va

ri
an

t a
nd

 im
pa

ct
 a

na
ly

si
s

N
ee

ds
R

ec
en

t
So

ur
ce

>
5

>
20

In
 s

ep
ar

at
e

cl
as

s
fil

e
G

U
I

Y
es

M. Khari

19

Table 4  List of abbreviations and their supported tools

Operator Description Tools Operator Description Tools

ABS Absolute value insertion T3, T5 PNC New method calls with
child class type

T3

LCR Logical connector
replacement

T3, T5 PMD Member variable
declaration with parent
class type

T3

ROR Relational operator
replacement

T1, T2, T3,
T4, T5

PPD Parameter variable
declaration with child class
type

T3

UOI Unary operator
insertion

T3, T5 PCI Type cast operator insertion T3

AOR Arithmetic operator
replacement

T3, T4, T5 PCD Typecast operator deletion T3

ERP Event-keyword
replacement

T3 PCC Typecastoperator to change T3

EDL Event-keyword deletion T3 PRV Reference assignment with
another comparable
variable

T3

MNR Method name
replacement

T3 OMR Overloading method
contents replace

T3

MND Method name deletion T3 OMD Overloading method
deletion

T3

DNR Data name replacement T3 OAC Arguments of overloading
method call change

T3

DVR Data value replacement T3 JDC JAVA-supported default
constructor create

T3

DVN Data value for data
names replacement

T3 AMC Access modifier change T3

ROR Relational operator
replacement

T3 IHI Hiding variable insertion T3

OAR Arithmetic operator
replacement

T3 IHD Hiding variable deletion T3

AOI Arithmetic operator
insertion

T3 IOD Overriding method deletion T3

AOD Arithmetic operator
deletion

T3 IOP Overriding method calling
position change

T3

COR Conditional operator
replacement

T2,T3,
T4,T5

IOR Overriding method renames T3

COI Conditional operator
insertion

T1,T2,T3 ISD Super keyword deletion T3

COD Conditional operator
deletion

T1,T2,T3 ISI Super keyword insertion T3

SOR Shift operator
replacement

T2,T3,
T4,T5

IPC Explicit call of a parent’s
constructor deletion

T3

LOR Logical operator
replacement

T2,T3,
T4,T5

JSC Static modifier change T3

(continued)

Comparison and Validation of Mutation Testing Tools Based on Java Language

20

Table 4  (continued)

Operator Description Tools Operator Description Tools

LOI Logical operator
insertion

T2,T3 JID Member variable
initialization deletion

T3

LOD Logical operator
deletion

T2,T3 JTD This keyword deletion T3,T5

ASR Assignment operator
replacement

T2,T3, T5 UOD Unary operator deletion T5

EOA Reference assignment
and content assignment
replacement

T5 EOC Reference comparison and
content comparison
replacement

T5

JTI This keyword insertion T5 EAM Accessor method change T5
EMM Modifier method

change
T5 RNC Replace numerical constant T6

RAO Replace arithmetic
operator

T6 OMC Omit method calls T6

AORB Arithmetic operator
replacement binary

T2 AORU Arithmetic operator
replacement unary

T2

AORS Arithmetic operator
replacement shortcut

T2 AOIU Arithmetic operator
insertion unary

T2

AOIS Arithmetic operator
insertion shortcut

T2 AODU Arithmetic operator
deletion unary

T2

AODS Arithmetic operator
deletion shortcut

T2 AVI Absolute value insertion T4

RQ 3. Which MTT is the best in terms of quality parameters, such as memory usage,
CPU utilization, mutation score, and the time took per mutant to kill a fault?

The quality of MTTs is measured in terms of memory usage, CPU utilization,
mutation score, and time. All these parameters are discussed in this RQs.

Memory Usage: The memory usage refers to the memory used by a program
during execution. The authors have focused on six MTTs and calculated memory
consumption for particular and each PUT. The output of memory consumption is
presented in Table 5, and the graph is presented in Fig. 1. After analysis, perfor-
mance of T3 is the best in program P1. Mutation tool T3 consumes 12.09 MB mem-
ory, and other tools are consuming T2-16.11, T3-28.74, T4-23.2, T5-24.05, and
T6-27.29. The performance of all subject programs with respect to the memory
consumption with tools is T1-22.7, T2-26.2, T3-11.6, T4-21.5, T5-23.8, and T6-25.
The T3 tool is performed well best as compared to other tools.

The estimated memory usage and the corresponding graphical representation for
the six MTTs are given in Table 5 and Fig. 1, respectively. Clearly, T3 uses the least
memory in comparison to other MTTs with the average memory usage of 11.6
(averages of T1, T2, T4, T5, and T6 are 22.7, 26.2, 21.5, 23.8, and 25, respectively).

CPU Utilization: CPU usage alludes to a workstation’s use of transforming
assets, or the measure of work taken care of by a CPU. Real CPU use differs upon
the sum and kind of oversaw processing errands. Certain errands oblige substantial
CPU time, while others require less as a result of non-CPU asset prerequisites. The

M. Khari

21

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

Memory Usage

T1

T2

T3

T4

T5

T6

Fig. 1  Graphical representation of results of memory usage

CPU performs all the evaluations that are required to procedure transactions. The
huge transaction-related estimations that it works inside a specific period, the
increases the throughput will be for that particular period. The results of CPU utili-
zation are represented in Table 6, and the graphical representation is depicted in
Fig. 2. The average performance of all subject programs with respect to the CPU

Table 5  Memory usage of six mutation testing tools

T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6

P1 16.11 28.74 11.09 23.21 24.05 27.29 P12 21.45 23.37 13.35 19.36 23.24 27.26

P2 18.90 28.24 10.12 20.98 21.87 25.19 P13 26.27 24.12 12.14 19.61 24.21 27.66

P3 24.22 27.77 13.62 19.96 24.06 26.37 P14 24.55 24.39 12.34 20.48 25.62 27.00

P4 24.07 27.02 12.36 25.34 23.56 20.96 P15 23.93 25.03 11.15 19.20 24.91 27.69

P5 23.04 25.81 10.04 25.27 22.85 24.21 P16 17.22 25.52 10.03 18.43 23.82 20.98

P6 24.34 27.69 12.07 20.85 22.91 21.14 P17 18.77 27.27 11.85 27.21 26.30 24.31

P7 21.61 25.75 10.4 19.50 24.05 21.63 P18 25.31 25.81 9.95 21.59 24.54 24.42

P8 23.15 26.69 12.9 20.44 22.59 23.39 P19 25.03 27.05 12.8 23.10 23.85 25.27

P9 21.91 28.25 12.61 24.17 21.68 27.20 P20 26.34 25.82 12.41 17.91 22.13 25.39

P10 21.42 27.88 11.43 17.11 23.76 26.35 App. 1 26.79 27.77 12.04 26.71 26.71 27.71

P11 22.25 23.81 12.04 19.59 24.06 23.76 App. 2 24.61 22.89 10.24 24.07 24.84 26.56

Table 6  CPU utilization of six mutation testing tools

T-1 T-2 T-3 T-4 T-5 T-6 T-1 T-2 T-3 T-4 T-5 T-6

P1 16.41 24.09 31.01 24.32 14.02 24.31 P12 17.61 26.34 30.08 23.21 12.19 21.82

P2 12.63 23.04 30.61 23.12 13.91 23.62 P13 18.98 25.32 32.02 24.72 18.32 24.59

P3 13.22 23.91 32.66 24.26 12.61 25.81 P14 13.96 26.87 31.91 24.17 18.61 21.66

P4 11.74 18.82 30.13 22.10 14.33 26.98 P15 14.81 25.62 31.83 22.61 17.64 24.88

P5 13.91 21.63 30.16 22.76 14.32 21.68 P16 19.28 23.77 32.01 23.48 16.79 21.17

P6 14.14 22.19 32.42 23.22 13.61 22.94 P17 17.49 24.91 32.64 23.19 16.33 21.83

P7 13.72 22.64 32.14 22.01 13.19 20.15 P18 16.71 24.92 31.27 24.02 15.91 21.52

P8 14.68 22.72 33.06 23.57 11.31 21.43 P19 19.21 26.74 33.45 24.91 15.32 24.99

P9 14.72 24.81 31.15 24.12 12.98 23.64 P20 19.47 26.72 30.61 23.60 13.14 21.17

P10 11.24 23.99 30.41 23.14 13.17 23.49 App. 1 19.43 27.62 35.65 22.32 20.19 26.28

P11 17.32 25.62 33.74 22.67 14.32 24.79 App. 2 16.12 30.08 33.81 20.09 19.32 22.59

Comparison and Validation of Mutation Testing Tools Based on Java Language

22

Figure 2: Graphical representation of results of CPU Utilization.
0.00
5.00
10.00
15.00
20.00
25.00
30.00
35.00
40.00

CPU Utilization

T1

T2

T3

T4

T5

T6

Fig. 2  Graphical representation of results of CPU utilization

Table 7  Mutation score of six mutation testing tools

T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6

P1 68% 18% 68% 43% 37% 32% P12 35% 34% 24% 19% 15% 35%
P2 62% 24% 57% 29% 16% 37% P13 39% 32% 31% 39% 38% 39%
P3 63% 14% 52% 40% 17% 33% P14 40% 32% 58% 26% 20% 40%
P4 65% 21% 60% 13% 28% 19% P15 56% 40% 30% 37% 32% 56%
P5 63% 20% 63% 37% 14% 15% P16 32% 23% 78% 82% 55% 32%
P6 61% 35% 61% 21% 12% 17% P17 44% 28% 82% 88% 75% 44%
P7 52% 12% 36% 25% 9% 14% P18 41% 38% 56% 60% 45% 41%
P8 59% 22% 32% 35% 14% 36% P19 40% 24% 21% 12% 11% 40%
P9 64% 13% 64% 25% 5% 16% P20 43% 23% 19% 18% 15% 43%
P10 68% 20% 68% 21% 14% 5% App. 1 87% 70% 81% 58% 39% 87%
P11 56% 47% 50% 36% 47% 43% App. 2 54% 54% 72% 47% 49% 54%

utilization through tools T1, T2, T3, T4, T5, and T6 is 15.7%, 24.6%, 31.9%, 23.2%,
15%, and 23.2%, respectively. On an average, the performance of T3 is best in com-
parison to the other considered tools.

Mutation Score: The live mutants are those mutants which are not processed
even once. The live mutant depicts one of the following two situations. First, the
modified project is directly proportionate to the first practically. Second is unhiding
the experiments that don’t present or the test case is incompetent for unrevealing
and assassinating it. So, authors focused on similar mutant as the alive mutant, simi-
lar mutants generate the same result as the PUT always, nevertheless of the test
supplied.

Mutants are killed by iteratively producing and executing test cases, in order to
determine the killed mutants. The determination of a program to be live and killed
is done by differentiating the result of the original and mutated programs. Authors
have executed each program on each and every tool, and their respective results of
mutation score are shown in Table 7, and the graphical representation is depicted in
Fig. 3. Total numbers of mutants are always equal to the combination of live mutants
and killed mutants. Authors calculate the mutation score (MS) where killed mutant
(MK), total mutant (MT), and live/equivalent mutants (ML/E) are based on Eq. 1:

	 M M M M MS K T K L E� �� �/ / 	 (1)

M. Khari

23

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Mutation Score

T1

T2

T3

T4

T5

T6

Fig. 3  Graphical representation of results of mutation score

Table 8  Time was taken to kill one mutant by six mutation testing tools

T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6

P1 12.12 7.07 1.85 5.38 13.12 14.22 P12 0.22 0.25 0.03 0.05 0.59 0.39
P2 1.84 1.24 0.47 0.99 2 2.22 P13 11.89 8 2.5 6.58 7.98 10.8
P3 2.07 1.28 0.14 0.41 2.15 0.98 P14 3.3 4.25 1.26 1.96 5.49 2.56
P4 6 16.5 2.62 16.08 6.39 23.78 P15 0.22 0.75 0.04 0.17 1.39 0.88
P5 17.42 20.38 2.32 5.91 14.16 11 P16 0.92 0.36 0.04 0.29 1 0.44
P6 4.05 1.3 0.67 2.68 3.14 4.67 P17 0.45 0.12 0.03 0.1 0.18 0.21
P7 0.97 1.74 0.22 0.56 3.45 3.1 P18 1.94 1.22 0.47 1.66 0.8 3.52
P8 0.17 0.25 0.03 0.08 0.6 0.19 P19 0.76 0.59 0.06 0.27 1.68 0.93
P9 1.87 32.7 0.62 2.4 17.95 2.77 P20 0.06 0.23 0.01 0.02 0.12 0.14
P10 0.37 0.19 0.02 0.25 0.6 0.82 App. 1 1.68 2.53 0.82 1.09 4.08 2.07
P11 0.69 0.96 0.3 0.99 0.89 0.84 App. 2 1.38 0.51 0.23 1.06 1.3 0.7

The average performance of all subject programs with respect to the MS through
tools T1, T2, T3, T4, T5, and T6 is 34%, 37%, 64%, 42%, 31%, and 39%, respec-
tively. The average performance of T3 in terms of MS is best compared to other
considered tools.

Time is taken to kill one mutant:

Now, evaluate the total time required to execute a particular program by a sub-
jected tool and then calculate the kill rate of a mutant on a particular tool. With the
support of time in MS and the information about the total killed mutant, the authors
calculate the time it takes to kill one mutant. TMK stands for time per mutant, where
Time (T) is in Eq. 2:

	 TM T MK K= / 	 (2)

The results of the time taken to kill one mutant are represented in Table 8, and the
graphical representation is depicted in Fig. 4. The average performance of all sub-
ject programs with respect to the time taken to kill one mutant through tools T-1,
T-2, T-3, T-4, T-5, and T-6 is 6.6, 6.5, 1.8, 5.8, 9.3, and 9.6, respectively. Tool T3
takes less time in terms of TMK compared to other considered tools.

Comparison and Validation of Mutation Testing Tools Based on Java Language

24

0

5

10

15

20

25

30

35

Killed Mutant Per Milisecond

T1

T2

T3

T4

T5

T6

Fig. 4  Graphical representation of results of time taken to kill one mutant

Table 9  Average performance of each mutation testing tools versus parameters

Parameters/tools T1 T2 T3 T4 T5 T6

Memory usage 22.79 26.21 11.68 21.55 23.89 25.08
CPU utilization 15.76 24.65 31.94 23.26 15.07 23.24
Mutation score 34 37 64 42 31 39
Kill rate 3.2 4.6 0.67 2.23 4.05 3.97

RQ 4. What is the statistical evidence to prove the best tool among the six MTT?

Statistical evidence to prove the best tool among the six MTTs is the average
performance of each tool in terms of memory usage, CPU utilization, mutation
score, and kill rate, which is shown in Table 9.

First, calculate the standard deviation (σ) of each parameter using the “n-1”
method. Authors retrieve σ 9.82 for memory usage, for CPU utilization – 6.24, for
mutation score – 11.8, and for kill rate σ 1.45. σ this symbol is considered that its
arguments is the sample of the population.

	 � �
��
��

x x

n

2

1

�
�

	 (3)

Here x is the sample mean, and n is the sample size. Example mean, x, is at the
focal point of this extent, and the reach is confidence interval.

For instance, if x is the mean of CPU utilization for items, then confidence inter-
val is an extent of the population mean on the basis of the sample mean.

For each population means μ, the likelihood of getting a specimen mean further
from μ than x is more stupendous than alpha (the level of significance). For each
population mean, μ, in this extent, the likelihood of acquiring an example mean
additionally from μ than x is short of what alpha. As it were, expect that authors
utilize x, which is the standard deviation and size to develop a two-tailed test criti-
calness level alpha of the speculation that the population mean is μ. At that point, the

M. Khari

25

authors won’t dismiss that assumption if μ is in the confidence interval and will
dismiss that theory if μ is not in the confidence period. The confidence period does
not permit us to surmise the likelihood that the next bundle will take over the con-
veyance time that is in the confidence period. Here, alpha = 0.05, it is needed to
evaluate the area under the standard normal curve that equals or 95%. This value is
±1.96. The confidence interval is calculated by using the given formula in Eq. 4
(Table 10):

	 x
n

�
�

�
�
�

�
�
�1 96.

�
	 (4)

For example, for tool T1, the confidence interval for the memory usage is lying
between 21.57 and 24.01. It means the memory usage of the tool is between 21.57
and 24.01 at 95% of the time. If authors take any 100 programs, then 95 programs
will be having the memory usage lying in the given interval.

RQ 5. What are the major issues to be considered while working on six JAVA-
based MTT?

While working with all the six JAVA-based MTT, few issues have occurred, and
they must be considered at the time of practical usage by software practitioners and
researchers. These are mentioned below:

•	 Major Issues in T1: T1 scheme is to produce, compile, and execute unit tests
across the mutant. The procedure is repeated for each mutant of source program,
and, therefore, it is not efficient. Hence, a long time is taken by T1 to run, and the
output requires little man-made effort to change. It does not support the OO
mutation operators.

•	 Major Issues in T2: It supports only 20 OO operators for mutation. It supports
command line interpreter.

•	 Major Issues in T3: Representation of output is not user-friendly.
•	 Major Issues in T4: OO mutation operators are not supported by the Jumble tool.

Fixed replacements for the other mutation operators are provided by this tool.
•	 Major Issues in T5: Every generated mutant is not compiled. So, there is a ten-

dency to miss out changes in complex mutants that might have been unique to
them. JVM limits the size of the class. Mass compilation of mutants was not
effective. A compilation error generated by a single mutant breaks the processing
of all simultaneously compiled mutants.

•	 Major Issues in T6: Scalability problem occurred while executing 500 LOC, and
hence it gets hanged up. Running T6 on a library shows that it has dependencies
(e.g., XStream) that can become a tricky issue. Build files are missing; hence,
they have to be downloaded from the Linux software center. If one has to run the
source code for a mutation, then that code has to be copied from the Javalanche
folder. It does not support the OO mutation operators.

Comparison and Validation of Mutation Testing Tools Based on Java Language

26

Ta
bl

e
10

 
95

%
 c

on
fid

en
ce

 in
te

rv
al

 f
or

 m
ea

n

Pa
ra

m
et

er
/to

ol
s

T
1

T
2

T
3

T
4

T
5

T
6

M
em

or
y

us
ag

e
(2

4.
01

, 2
1.

57
)

(2
6.

93
,2

5.
49

)
(1

2.
16

,1
1.

20
)

(2
2.

76
,2

0.
34

)
(2

4.
44

,2
3.

35
)

(2
6.

04
,2

4.
12

)
C

PU
 u

til
iz

at
io

n
(1

6.
85

,1
4.

68
)

(2
5.

65
,2

3.
66

)
(3

2.
54

,3
1.

35
)

(2
3.

70
,2

2.
81

)
(1

6.
11

,1
4.

03
)

(2
4.

03
,2

2.
45

)
M

ut
at

io
n

sc
or

e
(0

.3
9,

0.
30

)
(0

.4
6,

0.
27

)
(0

.6
8,

0.
59

)
(0

.4
8,

0.
36

)
(0

.3
8,

0.
24

)
(0

.5
0,

0.
29

)
K

ill
 r

at
e

(5
.1

4,
1.

26
)

(8
.1

0,
1.

21
)

(1
.0

3,
0.

31
)

(3
.7

6,
0.

70
)

(6
.1

4,
1.

96
)

(6
.4

3,
1.

50
)

M. Khari

27

6 � Conclusions and Future Work

Mutation testing is the artificial seeding of faults into the PUT. The authors have
analyzed six open-source JAVA-based MTT (Jester, JavaMut, MuJava, Jumble,
Judy, and Javalanche). The tools have been compared theoretically and empirically,
and the results were formulated. Benchmark comparison among the MTT is pre-
sented for issues in terms of mutants, mutation operator, mutation score, and quality
of output. On the basis of performance analysis, each tool is discussed along with
the protocols for identifying the best tool among the six JAVA-based MTT in terms
of killing the mutants. The results show that the MuJava, that is, T3 MTT, performs
best when compared to T1, T2, T4, T5, and T6. The research questions and their
solutions provide guidelines for selecting MTT for practitioners and researchers.

Future scope of our research is to automate the production of mutants and test
cases that will provide the solution to the mutation issues to some extent and intro-
duce some other OO mutation operators, and it can be helpful to produce mutants
that are killed by the current test data set. Additional research will be done by using
case studies to differentiate mutation operators, and it provides real hints on how to
select appropriate operators.

References

1.	DeMillo, R. A., Lipton, R. J., & Sayward, F. G. (1978). Hints on test data selection: Help for
the practicing programmer. Computer, 11(4), 34–41.

2.	 Jeevarathinam, R., & Thanamani, A. S. (2011). A survey on mutation testing methods, fault
classifications and automatic test cases generation.

3.	 Irvine, S. A., Pavlinic, T., Trigg, L., Cleary, J. G., Inglis, S., & Utting, M. (2007, September).
Jumble java byte code to measure the effectiveness of unit tests. In Testing: Academic and
industrial conference practice and research techniques-MUTATION (TAICPART-MUTATION
2007) (pp. 169–175). IEEE.

4.	Madeyski, L., & Radyk, N. (2010). Judy – A mutation testing tool for Java. IET Software,
4(1), 32–42.

5.	Offutt, A. J., Pan, J., Tewary, K., & Zhang, T. (1996). An experimental evaluation of data flow
and mutation testing. Software: Practice and Experience, 26(2), 165–176.

6.	Moore, I. (2001). Jester-a JUnit test tester. Proceedings of 2nd XP, 84–87.
7.	Untch, R. H., Offutt, A. J., & Harrold, M. J. (1993, July). Mutation analysis using mutant

schemata. In Proceedings of the 1993 ACM SIGSOFT international symposium on Software
testing and analysis (pp. 139–148).

8.	DeMillo, R. A., & Offutt, A. J. (1991). Constraint-based automatic test data generation. IEEE
Transactions on Software Engineering, 17(9), 900–910.

9.	King, J. C. (1976). Symbolic execution and program testing. Communications of the ACM,
19(7), 385–394.

10.	Sen, K., Marinov, D., & Agha, G. (2005). CUTE: A concolic unit testing engine for C. ACM
SIGSOFT Software Engineering Notes, 30(5), 263–272.

11.	Harman, M., & McMinn, P. (2007, July). A theoretical & empirical analysis of evolutionary
testing and hill climbing for structural test data generation. In Proceedings of the 2007 inter-
national symposium on software testing and analysis (pp. 73–83).

Comparison and Validation of Mutation Testing Tools Based on Java Language

28

12.	Zapf, C. N. (1993). MedusaMothra-A distributed interpreter for the Mothra mutation testing
system (Master’s thesis, Clemson University).

13.	Maldonado, J. C., Delamaro, M. E., Fabbri, S. C., da Silva Simão, A., Sugeta, T., Vincenzi,
A. M. R., & Masiero, P. C. (2001). Proteum: A family of tools to support specification and
program testing based on mutation. In Mutation testing for the new century (pp. 113–116).
Springer.

14.	Ma, Y. S., Offutt, J., & Kwon, Y. R. (2006, May). MuJava: A mutation system for Java. In
Proceedings of the 28th international conference on Software engineering (pp. 827–830).

15.	Schuler, D., & Zeller, A. (2009, August). Javalanche: Efficient mutation testing for Java. In
Proceedings of the 7th joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on the foundations of software engineering (pp. 297–298).

16.	Offutt, A. J., & King, K. N. (1987, July). A Fortran 77 interpreter for mutation analysis. In
Papers of the symposium on interpreters and interpretive techniques (pp. 177–188).

17.	Agrawal, H., DeMillo, R., Hathaway, R., Hsu, W., Hsu, W., Krauser, E. W., … Spafford,
E. (1989). Design of mutant operators for the C programming language (Technical report
SERC-TR-41-P). Software Engineering Research Center, Purdue University.

18.	Papadakis, M., & Malevris, N. (2012). Mutation based test case generation via a path selection
strategy. Information and Software Technology, 54(9), 915–932.

19.	Delamaro, M. E., Maldonado, J. C., Pasquini, A., & Mathur, A. P. (2001). Interface muta-
tion test adequacy criterion: An empirical evaluation. Empirical Software Engineering, 6(2),
111–142.

20.	Chevalley, P., & Thevenod-Fosse, P. (2003). A mutation analysis tool for Java programs.
International Journal on Software Tools for Technology Transfer, 5(1), 90–103.

21.	Guderlei, R., Just, R., Schneckenburger, C., & Schweiggert, F. (2008, April). Benchmarking
testing strategies with tools from mutation analysis. In 2008 IEEE international conference on
software testing verification and validation workshop (pp. 360–364). IEEE.

22.	Alexander, R. T., Bieman, J. M., Ghosh, S., & Ji, B. (2002, November). Mutation of Java
objects. In 13th international symposium on software reliability engineering, 2002.
Proceedings (pp. 341–351). IEEE.

23.	Tuya, J., Suárez-Cabal, M. J., & De La Riva, C. (2007). Mutating database queries. Information
and Software Technology, 49(4), 398–417.

24.	Serrestou, Y., Beroulle, V., & Robach, C. (2006, April). How to improve a set of design vali-
dation data by using mutation-based test. In 2006 IEEE design and diagnostics of electronic
circuits and systems (pp. 75–76). IEEE.

25.	Ferrari, F. C., Nakagawa, E. Y., Maldonado, J. C., & Rashid, A. (2011, March). Proteum/AJ:
A mutation system for AspectJ programs. In Proceedings of the tenth international conference
on Aspect-oriented software development companion (pp. 73–74).

26.	Ma, Y. S., Harrold, M. J., & Kwon, Y. R. (2006, May). Evaluation of mutation testing for
object-oriented programs. In Proceedings of the 28th international conference on software
engineering (pp. 869–872).

27.	Jia, Y., & Harman, M. (2010). An analysis and survey of the development of mutation testing.
IEEE Transactions on Software Engineering, 37(5), 649–678.

28.	Nanavati, J., Wu, F., Harman, M., Jia, Y., & Krinke, J. (2015). Mutation testing of memory-
related operators. In 2015 IEEE eighth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW) (pp. 1–10). IEEE.

29.	Li, N., West, M., Escalona, A., & Durelli, V. H. (2015, April). Mutation testing in practice
using ruby. In 2015 IEEE eighth International Conference on Software Testing, Verification
and Validation Workshops (ICSTW) (pp. 1–6). IEEE.

30.	Aichernig, B. K., Brandl, H., Jöbstl, E., Krenn, W., Schlick, R., & Tiran, S. (2015). Killing
strategies for model-based mutation testing. Software Testing, Verification and Reliability,
25(8), 716–748.

M. Khari

29

31.	Just, R. (2014, July). The major mutation framework: Efficient and scalable mutation analysis
for Java. In Proceedings of the 2014 international symposium on software testing and analysis
(pp. 433–436).

32.	http://www.ise.gmo.edu:8080/ofut/jsp/stis
33.	https://adrive.com/
34.	Khari, M., Dalal, R., & Rohilla, P. (2020). Extended paradigms for botnets with WoT applica-

tions: A review. Smart Innovation of Web of Things, 105.

Comparison and Validation of Mutation Testing Tools Based on Java Language

http://www.ise.gmo.edu:8080/ofut/jsp/stis
https://adrive.com/

31

State Traversal: Listen to Transitions
for Coverage Analysis of Test Cases
to Drive the Test

Sonali Pradhan, Mitrabinda Ray, Sukant Bisoyi, and Deepti Bala Mishra

1 � Introduction

Testing assesses the quality of the product that is done during the development
phase. Software testing is a verification and validation process. Testing at the
early phase (design phase) observes early fault detection at which decreases
cost in the software development life cycle. The design phase needs to be
enhanced to recover the detected faults. The faults which are detected in the
design phase need to be recovered before the program is written [1, 2]. To find
the effectiveness of test cases and to minimize the development effort, model-
based testing (MBT) is a very constructive one [3, 4]. Test cases are generated
at the early phase of development using this testing approach [5, 6]. To generate
test cases in the design phase, the tester uses unified modeling language (UML)
diagrams [7–9].

Initially, the testers went for code coverage testing. In the white box testing, test-
ing of implementation code is done as code-based testing [10–13]. However, in
code-based testing, it is difficult to achieve state coverage [14, 15]. In state-based
testing (SBT), test scenarios are generated from the state chart diagrams. The cover-
age analysis is also performed from the source code using various tools. Different

S. Pradhan (*) · S. Bisoyi
Department of Computer Science and Engineering, C. V. Raman Global University,
Bhubaneswar, India

M. Ray
Department of Computer Science and Engineering, S’O’A, Deemed to be University,
Bhubaneswar, India
e-mail: mitrabindaray@soa.ac.in

D. B. Mishra
Department of MCA, GITA Autonomous College, Bhubaneswar, India

© Springer Nature Switzerland AG 2022
M. Khari et al. (eds.), Optimization of Automated Software Testing Using
Meta-Heuristic Techniques, EAI/Springer Innovations in Communication and
Computing, https://doi.org/10.1007/978-3-031-07297-0_3

mailto:mitrabindaray@soa.ac.in
https://doi.org/10.1007/978-3-031-07297-0_3

32

state-based faults are achieved in SBT. The disadvantages we find from the code-
based testing over model-based testing are as follows:

•	 In code-based testing, the dynamic behavior of the system can’t be achieved;
here state and transition coverage can’t be reached.

•	 In order to perform code-based testing on an application, a tester needs to know
the internal structure of the program. However, the code is not always available
to the tester.

•	 To test all possible values of a feature is not possible when the source code is
large enough.

•	 Code-based testing is also not telling how much is the coverage in the code and
how well the logic is covered.

•	 The complexity of an object-oriented system can be remarked by the object
interactions. Complex behaviors are observed when related objects pass mes-
sages with each other within a scenario, and this type of behavior is achieved in
a sequence diagram. In the case of sequence diagrams, interactions between
objects are in a timely sequence manner.

•	 UML sequence diagram and collaboration diagram provide a way to model the
behavior of an object-oriented system. The advantages of model-based over
code-based are easier extraction of concurrent control flow and the nature of
polymorphism.

The main advantage in model-based testing is that the system behavior can be
achieved by following the pictorial or tabular representation of the model. It reduces
the testing interval without reducing quality as at the early phase of design; it
reduces the faults, which saves time and resources. To understand the advantage of
model-based testing over code-based testing, we have considered a small example
of a source code which is given below:

Source Code
Input: a, b
Output: Positive result/Negative result
Step 1: Print (int a, int b)
Step 2: {
Step 3: int result = a + b;
Step 4: If (result > 0)
Step 5: Print (“Positive result”, result)
Step 6: Else
Step 7: Print (“Negative result”, result)
Step 8 :}

S. Pradhan et al.

33

Let us say, we skip to check and print the negative part in the source code. Then
the following source code will be given below:

Source Code:
Input: a, b
Output: Positive result/negative result
Step 1: Print (int a, int b) {
Step 2: int result = a + b;
Step 3: If (result > 0)
Step 4: Print (“Positive result”, result)}

To test the code coverage mentioned above, we have considered Scenario 1.

Scenario 1:
If a=3, b=9

Step 1: Prints (int a, int b) {
Step 2: int result = a + b;
Step 3: If (result > 0)
Step 4: Print (“Positive result”, result)
Step 5 :}

The statements mentioned above are those which are executed as per the sce-
nario. According to this statement execution, code-based testing is also not telling
how much and how well the tester has to cover the logic. If the function is not
included in the specification, the structure base testing cannot find that issue.
Scenarios are a means of analyzing applications and understanding the dynamic
behavior. Another way to model scenarios is by using sequence diagram and col-
laboration diagram.

State-based testing is a type of black box testing, where early testing activities
are done before implementation of the model [7, 15, 16]. In state-based testing, unit
testing is done, and the unit’s behavior is achieved. It compares its actual states to
the expected states. This approach is accepted with object-oriented systems and for
complex behavior, such as critical real-time application as a computer system, mak-
ing a web application to a state chart for designing test cases, effective test strategies
for enterprise critical applications, etc. State-based testing also accomplishes state-
transition testing where some aspect of the system can be described known as a
finite state machine (FSM) [4, 17]. The finite state machine is very much important
in software testing. FSM validates an abstract model of the system, tests case gen-
eration at the development stage, assigns a pass/fail verdict, analyzes the execution
result to enhance the model, reduces cost by updating test cases, and prevents state-
based faults.

State Traversal: Listen to Transitions for Coverage Analysis of Test Cases to Drive the Test

34

create

insert-card ()
show-Deny message ()

access-Account ()

access to account

Start access denied

eject-Card ()

eat card

invalid pin

invalid pin entry greater than 3

end

Fig. 1  State diagram for PIN entry transaction

A finite state system is often shown as a state diagram. State-based testing is also
a type of model-based testing [18, 19] where the state changes are observed in sys-
tem under test (SUT). The tester observes all coverage like transition, state, action
or event, etc. A state chart diagram is shown in Fig. 1 as personal identity number
(PIN) transaction for a bank account. The states are shown in oval shapes, and the
transitions are lines with arrows. The events are given the text near the transitions
which exhibits triggering a transition when an event occurred. The state diagram
shows four states of the transaction such as start, access denied, access to account,
and eat card, and four possible events are card inserted, entering valid pin, entering
invalid pin, and invalid pin entry greater than 3. The state chart diagram shows four
events such as insert-Card (), show-Deny message (), access-Account (), and
eject-Card ().

To derive test cases, the typical scenarios are as follows:

T1 (test case 1) = insert-Card () ---- access-Account () [start – access to account]
T2 = insert-Card () ---- show Deny message () [start – access denied]
T3 = insert-Card () ----show Deny message () ---- show Deny message () ---- show

Deny message () ---- eject Card () [start – eat card]

In state transition technique, a single state can be used to the requirement; other-
wise, a series of different states can be used in the model. In case of failure, the
suspect area is limited. Identical inputs are not always accepted, and if accepted
they may produce different outputs, and this can check the state-based behavior of
the system.

For a nonfinite system, where the execution is not in sequential order, it is chal-
lenging to get the exact state change in the model behavior. Coverage analysis is
always done from the source code. Another greatest disadvantage is that for small
systems it is quite simple to define all possible states, but it is not as easy for a larger
system as there is an exponential progression in the number of states. Unit (class)
testing is a level of software testing where an individual unit of software is tested. In

S. Pradhan et al.

35

state-based testing, unit/class testing is done. The state-based unit testing makes
sure the class behaves as per the design. The purpose of unit testing in state-based is
to validate each unit/component of the software with consideration of the design.
Chow [20] proposed W-method to generate test sequences from a spanning tree to
the behavior of the SUT. W-method is again changed by Binder [15]. There round
trip path (RTP) is used as a coverage criterion of UML diagram. Binder proposed a
new method for state-based testing. To cover all paths in the diagram, the transition
tree is generated, and that is traversed to cover all paths/transitions present in that
tree. The repeated state is the stopping state which is already covered when tra-
versed. Then some new coverage criteria are proposed by Turner [21] on state-based
testing. Most studied coverage criteria are full predicate (FP), round trip path (RTP),
and all transitions (AT), all transition pairs (ATP), ATP paths of length 2 (LN2), ATP
paths of length 3 (LN3), and ATP paths of length 4 (LN4) [5, 20, 22]. Some critical
aspects of MBT approaches are presented in the survey paper [17]. This chapter
elaborates the concepts and frame for accessing model-based testing tools. An
industrial testing aspects influence the cost-effectiveness using SBT [4, 17]. In a
work [18, 20], they assessed test selection criteria using extended finite state
machines (EFSMs). In a broad overview, the tester goes for synchronous and asyn-
chronous testing using behavioral state chart diagram.

The principal aim of the tester is to generate a set of useful test cases for different
applications in software development. Most of the literature survey shows the
improvement of the algorithm to generate test cases using various types of UML
diagrams. The aim is always to generate effective test cases. To generate a minimal
set of effective test cases is the most significant challenge. This motivates us to work
on state-based testing which deals in synchronous environment. For a large and
complex system, manually testing is a very tedious process and time-consuming.
Hence, manual testing is not acceptable; the tester always tries for automated test
case generation, which is very much helpful in software development. Some little
change in the software leads to a significant change in the program. Various works
are already done in model-based testing, but the primary challenge is to different
state-based faults. The source code may not be available to the tester in all cases; it
is needed to generate test cases based on design specifications. When the system
under test is running under the asynchronous environment, the sequence of input-
output is difficult to achieve [23]. Hence, knowing the proper sequence of input-
output is a considerable challenge in asynchronous testing. Some web-based
applications are the best way to accomplish asynchronous state-based testing.
Hence, our work is motivated by the requirement to address the issues mentioned
earlier. With this motivation, we concentrate on automatically generating efficient
test cases using UML state chart diagrams.

The organization of this chapter is as follows: Sect. 2 includes the background
study, Sect. 3 describes related works, Sect. 4 shows the framework for generating
test cases, and Sect. 6 comprises the conclusion and future work.

State Traversal: Listen to Transitions for Coverage Analysis of Test Cases to Drive the Test

36

2 � Background Study

To address the broad objective discussed in the previous section, some basic con-
cept related to our work (synchronous testing) is elaborated [24]. Code-based test-
ing is done after the code is created. In code-based testing, the tester tests each
coverage as discussed above in Sect. 1. In model-based testing, it has all states; all
transitions (AT); round trip paths (RTP); all transition pairs (ATP) with LN2, LN3,
and LN4; full predicate; and all-paths coverage. The case study is shown in Fig. 2
as ATM card validation. We use Umbrello UML Modeller [25, 26] tool to draw the
state chart diagrams. We have used EclEmma [27, 28] a free Java code coverage tool
for Eclipse. It is used to show the percentage covered for the state and transition. In
all state coverage criteria, each state must be covered at least once [29]. In all transi-
tion (AT), every transition is exercised at least once without any specific order. It
covers all states, events, and actions [30]. This criteria cannot be avoided in testing.

Here, Fig. 2 is considered an example for state chart diagram. It shows the
sequence of transitions and states for ATM card validation. It has six states: ATM
idle, cardRead, Pin entry, verification, session next, and returning card. It exhibits
the following valid state coverage:

	1.	 (ATM idle, cardRead, Pin Entry)
	2.	 (ATM idle, cardRead, Pin Entry, Verification, Session Next)
	3.	 (ATM idle, cardRead, Pin Entry, Verification, Returning Card)

In this way, we use the coverage criteria AT, RTP, ATP, ATP with LN2, ATP with
LN3, and ATP with LN4 to traverse the paths. We also generate test cases by con-
sidering the event sequences in the state machine.

AT: T (I) = (t1, t2, t3)/(create, card entry, reading card successfully); (t1, t2, t3, t4)/
(create, card entry, reading card successfully, verify pin); (t1, t2, t3, t4, t5)/(cre-
ate, card entry, reading card successfully, verify pin, abort); (t1, t2, t3, t4, t5, t6)/
(create, card entry, reading card successfully, verify pin, abort, stopping pro-

create

card entry

card read successfully

Card Read

re-enter pin

t1

t2

t3

t4.1

t4

verify pin

pin verified

t7

t5

t8

session completion

t6
stop process

abort

Verification

Returning Card

Session NextPin Entry

ATM idle

Fig. 2  State chart diagram for ATM card validation of class ATM card

S. Pradhan et al.

37

cess); (t1, t2, t3, t4, t4.1)/(create, card entry, reading card successfully, verify pin,
re-enter pin); (t1, t2, t3, t4, t7)/(create, card entry, reading card successfully, veri-
fying pin, pin verified); (t1, t2, t3, t4, t5, t8)/(create, card entry, reading card
successfully, verify pin, complete session). Test suite for AT, [T (I)] = 7.

RTP: (t1, t2, t3, t4, t5, t8, t1); (t1, t2, t3, t4, t4.1, t4, t5, t8, t1). Test suite for RTP, [T
(II)] = 2.

ATP: T (III) = (t1, t2, t3, t4); (t1, t2, t3, t4); (t2, t2, t3, t4, t5, t8); (t1, t2, t3, t4, t5, t6).
Test suite for ATP, [T (III)] = 3.

ATP with LN2: T (IV) = (t1, t2, t3) [one test case].
ATP with LN3: T (V) = (t1, t2, t3, t4) [one test case].
ATP with LN4: T (VI) = (t1, t2, t3, t4, t5); (t1, t2, t3, t4, t5, t8); (t1, t2, t3, t4, t5, t6);

Test suite for ATP with LN4, [T (VI)] =3.

In mutation testing, bugs are intentionally inserted into the program, and mutants
are created. A mutant is simply a faulty program. The tester aims is to determine the
injected bugs that the test suite detected. The injected bugs represent the common
faults that it may find in a real program. Choosing an efficient and effective test suite
is one of the major tasks in software engineering. So, mutation testing plays an
indispensable role in that purpose.

3 � Related Work

We discuss the related works for model-based testing using state-based coverage
criteria. The mutation score of FP is similar or higher compared to ATP. We select
the AT, RTP, and ATP coverage criteria for this chapter. AT coverage found to be
inadequate in the level of fault detection [31]. ATP coverage is stronger than AT and
RTP with higher costs as it kills more mutants reported in paper [30]. Comparing
AT, ATP, and RTP criteria, RTP was shown to be more cost-effective [32]. From the
literature, it is seen that subsequent study said that for a weaker form of RTP cover-
age, which is not likely to be sufficient where significant numbers of faults remained
undetected [31–33]. Then RTP was compared to random testing, which says using
RTP 88% of the faults were detected. However, 69% faults were detected in random
testing. Some typical faults are undetected in RTP testing [32]. Combining RTP
with category-partition (CP) testing, the faults were detected with increasing cost.
Subsequently, combining RTP with white box, the testing result shows better fault
detection [34, 35]. A study shows that more than one transition tree can be gener-
ated by RTP strategy [32, 36]. Due to more transition tree generated, cost-effective-
ness can be increased. To improve the fault-detection effectiveness, Briand et al.
[37] suggest some methods using RTP criterion. They investigated that with OCL
guard conditions data flow analysis improves cost-effectiveness using various cov-
erage criteria [37]. The results suggested that the generated transition tree has maxi-
mum fault-detection ability in data flow information [36, 37]. In a small, nonindustrial
program, cruise control system [38], they found that a small percentage of the

State Traversal: Listen to Transitions for Coverage Analysis of Test Cases to Drive the Test

38

seeded faults was real and artificial faults were overwhelmingly reported [24, 31,
39]. There are studies for structural testing approaches for detecting realistic faults.
Some studies are there which were executed in industrial settings [39, 40]. Of those
studies, one study [39] did not mention about seeded faults. Another study [40]
revealed the use of seeded mutants. Unlike testing sequential programs, testing con-
current programs require special types of coverage criteria. The concurrency cover-
age criteria handle a huge number of interleaving sequential test paths. The test
paths are executed parallel. The rendezvous coverage criteria (RCC) is proposed by
R. Yang and C.G. Chung [41]. The RCC include rendezvous node coverage (RN),
rendezvous branch coverage (RB), rendezvous route coverage (RR), and concurrent
route coverage (CR) [41]. Then further investigations are done for concurrency cov-
erage criteria which is scalable and practical. The study evaluates the scalability of
four concurrency coverage criteria (APESS, APESSnT, O-RESS, and NO-RESS).
They introduce APESSnT, O-RESS, and NO-RESS coverage criteria. They further
compare between the scalability of these concurrent coverage criteria with large
numbers of processes, sequential test paths, and transitions.

4 � Framework for Generating Test Cases

We propose a framework to generate test cases which is shown in a flowchart
in Fig. 3.

The diagram clarifies the steps in this way. The state chart diagram is constructed
using StarUML tool. Then the diagram is converted to an appropriate intermediate
graph which we term as state chart intermediate graph (SCIG). Then coverage cri-
teria are applied to the graph to generate possible testing paths. Next, test cases are
generated from the testing path using different coverage criteria.

5 � Case Study Implementation

Case Study 1
The state diagram of Fig. 4 has five states: initial, empty, holding, full, and final,
respectively. The state, transition, and events are tested by traversing transition from
one state to another in the state chart diagram.

We introduce an intermediate graph as state chart intermediate graph (SCIG) in
our examples. An intermediate graph gives stepping information about the state
machine, where the order of states and transitions is mentioned. Various intermedi-
ate graphs are previously used such as testing flow graph (TFG) [42], state transition
graph (STG) [43], direct graph [44], flow graph (FG) [19], etc. where nodes and
edges are mentioned in an order. Traversing those graphs, test cases are generated.
TFG explicitly identifies flows of UML state chart diagrams and enhances for test-
ing. From TFG test cases are generated using the testing criteria for the state and

S. Pradhan et al.

39

Start

State Chart Diagram

Generate Intermediate Graph

Choose Coverage Criteria AT/RTP/ATP

Traverse the graph as per the coverage

Generate Test Cases

Conduct Coverage Analysis

Stop

Set of Test Cases with Coverage Perce

Fig. 3  Flow chart showing
the test case generation

Initial

create()

pop()

pop()destroy()

destroy()

push()

push()

Empty

Final

Holding

Full

if (stack size=max size) then stack full

if (stack size < max size) then add
add, delete

Fig. 4  State diagram of
stack operation

transition of diagrams. SCIG of stack operation is shown in Fig. 5. SCIG is a
directed graph that shows the order of states and transitions to be tested. The graph
edges represent transitions, and the circles represent the states. Here, we assume
that there is a unique node that corresponds to the start state. Other nodes represent
the state change from the start node to the end node. The state diagram stack opera-
tion has eight transitions and five states. We develop Java-based XMI parser to ana-
lyze the XMI code of state chart diagram to generate SCIG. A snapshot of Java-based
code of stack operation is shown in Fig. 6.

State Traversal: Listen to Transitions for Coverage Analysis of Test Cases to Drive the Test

40

Fig. 5  SCIG of stack
operation

Fig. 6  Program implementation for stack operation

Case Study 2
Our next figure (Fig. 7) shows another case study, soft drink vending machine. We
generate test transition sequences using AT, RTP, and ATP coverage criteria.

A state chart diagram of soft drink vending machine automation system object
is shown in Fig. 7. The sequences of various events are taken into consideration
to generate test cases. The object enters into various states working with different
events. For example, covering the states and transitions, we find different test cases
for the state model. Such as test case 1 (idle, showing option to select, displaying
message, collecting money, dispersing drinks), test case 2 (idle, showing option to

S. Pradhan et al.

41

Fig. 7  A state chart diagram for the soft drink vending machine

select, displaying message, collecting money, dispersing drinks, dispersing change),
test case 3 (idle, showing option to select, displaying message, collecting money,
dispersing drinks, displaying finish), and some other test cases. Once select drink
type event is triggered with the condition number of soft drinks <= 10), it goes to
state Displaying Message. Then prices for different soft drinks are displayed. As the
vending machine cannot deliver more than ten soft drinks, the condition X < = 10
is selected for each transaction. We calculate the Totalmoney = (x1 × p1 + x2 × p2 + x
3 × p3﴿ making a category (cat = category) of soft drinks as X1 for cat 1 soft drink,
X2 for cat 2 soft drink, and X3 for cat 3 soft drink. The variables P1, P2, and P3 are
the soft drink prices for cat 1, cat 2, and cat 3 described earlier.

All Transition (AT)
AT is considered as being the minimum amount of coverage that one ought to
accomplish in software testing. The test cases are as follows.

AT  {TC1 = (t1, t2)/(displaying selected option, insert money), TC2 = (t1, t3)/(dis-
playing selected option, show available soft drink), TC3 = (t1, t3, t4)/(displaying
select option, show available soft drink, select soft drinks [no. of drinks <=10]),
TC4 = (t1, t3, t4, t5)/(displaying select option, show available soft drink, select soft
drinks [No. of drinks <=10], available drinks after sell), TC5 = (t1, t2, t6)/(display-
ing selected option, insert money, sufficient amount), TC6 = (t1, t2, t6, t7)/(display-
ing selected option, insert money, amount, verify amount, insufficient amount), and
many more.

Round Trip Path (RTP)
RTP describes the beginning state as well as the end state and it is the same for all
paths in the state machine. A breadth- or depth-first search algorithm is used to
construct a transition tree. The repetition of the same node is the final node or end
node in the transition tree.

State Traversal: Listen to Transitions for Coverage Analysis of Test Cases to Drive the Test

42

RTP  {TC12 = (t1, t3, t4)/(displaying select option, show available soft drink, select
soft drinks [No. of drinks <=10]), TC13 = (t1, t5, t8, t10, t11, t12)/(displaying select
option, available drinks for sell, verify amount, return_money > = 0, change dis-
penser, return to idle), TC14 = (t1, t5, t9, t11, t12)/(displaying select option, avail-
able drinks for sell, return_money > = 0, return_money >0, change dispenser, return
to idle), TC15 = (t1, t2, t6, t8, t10, t11, t12)/(displaying select option, insert money,
sufficient amount, verify amount, return_money > = 0, change dispenser, return
to idle).

6 � Conclusion with Future Work

We focused on generating test cases using state chart diagrams. We considered vari-
ous coverage criteria to traverse the path in the state machine. This method assisted
us to detect various state-based faults. The common state-based faults we found are
missing transitions, missing states, incorrect events, etc. Here we gave emphasis on
various coverage criteria using different state models. Although SBT is not a new
research area, but this chapter presents a different aspect to evaluate state-based test-
ing. We observed different test cases by implementing various state-based coverage
criteria in various case studies. The researchers use various intermediate graphs
such as testing flow graph (TFG), flow graph (FG), state transition graph (STG), and
abstract syntax tree in different papers. We proposed an appropriate SCIG for the
state model to avoid the state explosion problem. In future work, we will be inter-
ested in test suite reduction using the concept of fuzzy logic.

References

1.	Antoniol, G., Briand, L. C., Di Penta, M., & Labiche, Y. (2002). A case study using the round-
trip strategy for state-based class testing. In Proceedings of the13th international symposium on
software reliability engineering (pp. 269–279). https://doi.org/10.1109/ISSRE.2002.1173268

2.	Mishra, D. B., Acharya, A. A., & Acharya, S. (2020). White box testing using genetic algo-
rithm—An extensive study. In A journey towards bio-inspired techniques in software engi-
neering (Vol. 185, p. 167). Springer.

3.	Agrawal, H., DeMillo, R., Hathaway, R., Hsu, W., Krauser, E., & Spafford, E. (1989). Design
of mutant operators for the C programming language (Technical report SERC-TR-41-P).
Software Engineering Research Center, Department of Computer Science, Purdue University.

4.	Holt, N. E., Briand, L. C., & Torkar, R. (2014). Empirical evaluations on the cost-effectiveness
of statebased testing: An industrial case study. Information and Software Technology, 56(8),
890–910. https://doi.org/10.1016/j.infsof.2014.02.011

5.	Kaner, C., & Padmanabhan, S. (2007). Practice and transfer of learning in the teaching of soft-
ware testing. In 20th Conference on Software Engineering Education & Training (CSEET’07)
(pp. 157–166). IEEE.

6.	Mishra, D. B., Mishra, R., Das, K. N., & Acharya, A. A. (2019). Test case generation and
optimization for critical path testing using genetic algorithm. In Soft computing for problem
solving (pp. 67–80). Springer.

S. Pradhan et al.

https://doi.org/10.1109/ISSRE.2002.1173268
https://doi.org/10.1016/j.infsof.2014.02.011

43

7.	Briand, L., & Labiche, Y. (2001). A UML-based approach to system testing. In International
conference on the unified modeling language (pp. 194–208). Springer.

8.	Mishra, D. B., Mishra, R., Das, K. N., & Acharya, A. A. (2017). A systematic review of soft-
ware testing using evolutionary techniques. In Proceedings of sixth international conference
on soft computing for problem solving (pp. 174–184). Springer.

9.	Farchi, E., Hartman, A., & Pinter, S. S. (2002). Using a model-based test generator to test for
standard conformance. IBM Systems Journal, 41(1), 89–110.

10.	Neto, A. D., Subramanyan, R., Vieira, M., Travassos, G. H., & Shull, F. (2008). Improving
evidence about software technologies: A look at model-based testing. IEEE Software,
25(3), 10–13.

11.	Dias-Neto, A. C., & Travassos, G. H. (2010). A picture from the model-based testing area:
Concepts, techniques, and challenges. In Advances in computers (Vol. 80, pp. 45–120).
Elsevier.

12.	Shafique, M., & Labiche, Y. (2010). A systematic review of model based testing tool support
(Technical report SCE-10-04). Carleton University.

13.	Nidhra, S., & Dondeti, J. (2012). Black box and white box testing techniques-a literature
review. International Journal of Embedded Systems and Applications (IJESA), 2(2), 29–50.

14.	Bohme, M., Pham, V. T., & Roychoudhury, A. (2017). Coverage-based greybox fuzzing as
Markov chain. IEEE Transactions on Software Engineering.

15.	Binder, R. V. (2000). Testing object-oriented systems: Models, patterns, and tools. Addison-
Wesley Professional.

16.	Broy, M., Jonsson, B., Katoen, J. P., Leucker, M., & Pretschner, A. (2005). Model-based test-
ing of reactive systems. Advanced lectures: Outcome of a research seminar. Springer. https://
doi.org/10.1007/b137241

17.	Utting, M., Pretschner, A., & Legeard, B. (2012). A taxonomy of model-based testing
approaches. Software Testing, Verification and Reliability, 22(5), 297–312.

18.	El-Far, I. K., & Whittaker, J. A. (2001). Model-based software testing. In Encyclopedia of
software engineering.

19.	El-Fakih, K., Simao, A., Jadoon, N., & Maldonado, J. C. (2017). An assessment of extended
finite state machine test selection criteria. Journal of Systems and Software, 123, 106–118.

20.	Chow, T. S. (1978). Testing software design modeled by finite-state machines. IEEE
Transactions on Software Engineering, SE-4(3), 178–187. https://doi.org/10.1109/
TSE.1978.231496

21.	Turner, C. D., & Robson, D. J. (1993). The state-based testing of object-oriented programs. In
Proceedings software maintenance CSM-93 conference on IEEE (pp. 302–310).

22.	Utting, M., Legeard, B., Bouquet, F., Fourneret, E., Peureux, F., & Vernotte, A. (2016). Recent
advances in model-based testing. Advances in Computers, 101, 53–20.

23.	Pradhan, S., & Ray, M. (2021). Asynchronous testing in web applications. In Intelligent and
cloud computing (pp. 355–361). Springer.

24.	Abdurazik, A., Ammann, P., Ding, W., & Offutt, J. (2000). Evaluation of three specification-
based testing criteria. In Proceedings sixth IEEE international conference on engineering of
complex computer systems. ICECCS 2000 (pp. 179–187). IEEE.

25.	Toth, K. (2006). Experiences with open source software engineering tools. IEEE Software,
23(6), 44–52.

26.	Safdar, S. A., Iqbal, M. Z., & Khan, M. U. (2015). Empirical evaluation of UML modeling
tools–a controlled experiment. In European conference on modelling foundations and appli-
cations (pp. 33–44). Springer.

27.	Arcuri, A., Fraser, G., & Galeotti, J. P. (2014). Automated unit test generation for classes with
environment dependencies. In Proceedings of the 29th ACM/IEEE international conference
on automated software engineering (pp. 79–90).

28.	Polo, M., Reales, P., Piattini, M., & Ebert, C. (2013). Test automation. IEEE Software,
30(1), 84–89.

29.	Utting, M., & Legeard, B. (2010). Practical model-based testing: A tools approach. Elsevier.

State Traversal: Listen to Transitions for Coverage Analysis of Test Cases to Drive the Test

https://doi.org/10.1007/b137241
https://doi.org/10.1007/b137241
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/TSE.1978.231496

44

30.	Holt, N. E., Torkar, R., Briand, L., & Hansen, K. (2012). State-based testing: Industrial evalua-
tion of the cost-effectiveness of round-trip path and sneak-path strategies. In 2012 IEEE 23rd
international symposium on software reliability engineering (pp. 321–330). IEEE.

31.	Briand, L. C., Labiche, Y., & Wang, Y. (2004). Using simulation to empirically investigate test
coverage criteria based on statechart. In Proceedings of the 26th international conference on
in software engineering (pp. 86–95). ICSE IEEE.

32.	Briand, L.C., Labiche, Y., & Lin, Q. (2005). Improving statechart testing criteria using data
flow information. In 16th IEEE International Symposium on Software Reliability Engineering
(ISSRE’05) (p. 10). IEEE.

33.	G. Antoniol, L. Briand, M. Di Penta, Y. Labiche. (2002). A case study using the round-trip
strategy for state-based class testing. In Proceedings of the 13th international symposium on
software, reliability engineering (ISSRE’02).

34.	S. Mouchawrab, L. Briand, Y. Labiche. (2007). Assessing, comparing, and combining
statechart-based testing and structural testing: An experiment. In First international sympo-
sium on empirical software engineering and measurement, ESEM 2007.

35.	Mouchawrab, S., Briand, L., Labiche, Y., & Di Penta, M. (2011). Assessing, comparing, and
combining state machine-based testing and structural testing: A series of experiments. IEEE
Transactions on Software Engineering, 37(2), 161–187.

36.	Pradhan, S., Ray, M., & Swain, S. K. (2019). Transition coverage based test case genera-
tion from state chart diagram. Journal of King Saud University-Computer and Information
Sciences.

37.	Briand, L., Labiche, Y., & Lin, Q. (2010). Improving the coverage criteria of UML state
machines using data flow analysis. Software Testing, Verification and Reliability, 20(3),
177–207.

38.	Gomaa, H. (2006). Designing concurrent, distributed, and real-time applications with UML. In
Proceedings of the 28th international conference on software engineering (pp. 1059–1060).

39.	Bogdanov, K., & Holcombe, M. (2001). State chart testing method for aircraft control systems.
Software Testing, Verification and Reliability, 11(1), 39–54.

40.	Chevalley, P., & Thévenod-Fosse, P. (2001). An empirical evaluation of statistical testing
designed from UML state diagrams: The flight guidance system case study. In Proceedings
12th international symposium on software reliability engineering (pp. 254–263). IEEE.

41.	Yang, R.D., & Chung, C.G. (1990). A path analysis approach to concurrent program testing.
In Ninth annual international Phoenix conference on computers and communications. 1990
conference proceedings (pp. 425–432). IEEE.

42.	Kansomkeat, S., & Rivepiboon, W. (2003). Automated-generating test case using UML stat-
echart diagrams. In Proceedings of the 2003 annual research conference of the South African
institute of computer scientists and information technologists on enablement through technol-
ogy (pp. 296–300).

43.	Swain, R., Panthi, V., Behera, P. K., & Mohapatra, D. P. (2012). Automatic test case generation
from UML state chart diagram. International Journal of Computer Applications, 42(7), 26–36.

44.	Belli, F., Budnik, C. J., Hollmann, A., Tuglular, T., & Wong, W. E. (2016). Model-based muta-
tion testing approach and case studies. Science of Computer Programming, 120, 25–48.

S. Pradhan et al.

45

A Heuristic-Based Test Case Prioritization
Algorithm Using Static Metrics

Daniel Getachew, Sudhir Kumar Mohapatra, and Subhasish Mohanty

1 � Introduction

As computer hardware becomes cheaper, the focus transfers to software systems.
Large software systems may be more complex than the hardware used to run them,
so there is a great demand for best practices and engineering processes that can be
applied to software development. Software engineering is a thickly folded and jum-
bled concept for those who want to have just a simple two-sentence definition about
it. According to [1], it is a systematic implementation of technological and scientific
knowledge, approach, and know-how to the design, implementation, testing, and
documentation of software. Also as defined by [2], software engineering is a disci-
plined, quantifiable approach to the operation, development, and maintenance of
software. Software testing is among the major phases of software engineering to
verify and validate the quality of software. It is a technique of executing a program
or system with the intent of finding defects which help us to confirm the product has
been manufactured by programmers as quality product. Also it assures that the man-
ufactured product is working as indicated on the requirement specification and
achieves user satisfaction.

Software testing took a lion's share to develop a test case prioritization to boost
the developer’s confidence in which the program is developed as intended to do so.
The main intention of software testing is to find faults in the program [3]. It can be
considered as verifying and validating. The verification process could be considered

D. Getachew
Addis Ababa Science and Technology University, Addis Ababa, Ethiopia

S. K. Mohapatra (*)
Faculty of Emerging Technologies, Sri Sri University, Cuttack, Odisha, India
e-mail: sudhir.mohapatra@srisriuniversity.edu.in

S. Mohanty
G.I.E.T University, Gunupur, Odisha, India

© Springer Nature Switzerland AG 2022
M. Khari et al. (eds.), Optimization of Automated Software Testing Using
Meta-Heuristic Techniques, EAI/Springer Innovations in Communication and
Computing, https://doi.org/10.1007/978-3-031-07297-0_4

mailto:sudhir.mohapatra@srisriuniversity.edu.in
https://doi.org/10.1007/978-3-031-07297-0_4

46

white-box testing, and it also answers the question “are we building the software,
right?” Also, the validation process addressed the question “are we building the
right question?,” and it is considered as black box testing [4].

Moreover, throughout the development of any software, there is always mainte-
nance and modification on any existing stage of the software version at production.
The changes made in that software may lead to the improvement of software fea-
tures and fixing bugs or break software, that is, introducing new bugs into the soft-
ware. Such breaking changes are called regression. So for the development team to
make sure that the newly added modification does not cause any break on the soft-
ware, they have to perform regression testing.

Regression testing is rerunning functional and nonfunctional tests to ensure that
previously developed and tested software still performs fine after a change. As
regression test suites tend to grow with each found defect, test automation is fre-
quently involved. Sometimes a change impact analysis is performed to determine an
appropriate subset of tests. Using software testing frameworks helps us to make an
effective test on our software.

2 � Related Work

Regression test selection (RST), test suite minimization (TSM), and test case priori-
tization (TCP) are leading regression testing strategies. The retest-all strategy holds
well when the test suite is small. However, as the size of test suite increases, an
ordering mechanism becomes necessary [5]. Test case prioritization (TCP) attempts
to find an optimal execution order of test cases to get the maximum rate of fault
detection. TCP has been an active field of research in software engineering for more
than two decades, and myriad techniques have been proposed for performing it [6].

The TCP problem has been addressed in several ways by many researchers [7].
Dario et al. [8] noticed that area under coverage (AUC) metrics represent a bidimen-
sional version of the hyper-volume metric, which is widely used in many-objective
optimization. Thus, they propose a hyper-volume base genetic algorithm, namely,
HGA, to solve the test case prioritization problem when using multiple test case
prioritization criteria. Also, an empirical study which they have conducted concern-
ing five state-of-the-art techniques (viz., additional greedy, multi-objective evolu-
tionary algorithm based on decomposition, non-dominated sorting genetic algorithm
II, generalized differential evolution 3, and a genetic algorithm based on an AUC
metric shows that: (i) HGA is more cost-efficient, (ii) HGA improves the efficiency
of test case prioritization, and (iii) HGA has stronger selective pressure when deal-
ing with more than three criteria. Muhammed et al. [9] also have proposed and
experiment using a firefly algorithm with fitness function defined using a similarity
distance model. And the result shows that firefly obtained highest average percent-
age of faults detected (APFD) scores compared to other prioritization algorithms
(particle swarm optimization (PSO), local beam search (LBS), greedy, and genetic

D. Getachew et al.

47

algorithm (GA)), and also their experiment shows that firefly algorithm slightly
outperforms LBS in terms of execution time.

Faiza et al. [10] research TCP optimization using a mutation testing-based priori-
tization technique. In this approach, they seed different faults in the original pro-
gram to create multiple mutated copies of the program, and the test case that detects
maximum number of faults gets highest priority. Their proposed technique shows an
improvement in the rate of fault detection of test suites. Hence, most test case priori-
tization techniques are developed using some coverage criteria, and that makes this
technique an exceptional white box prioritization technique. In addition to this Lei
et al. [11] experiment clustering approach combining fault prediction which results
that it can improve the effectiveness of test case prioritization. Wenhao et al. [12]
developed a TCP technique based on method invocation relationship and program
changes. By this approach, they combine method coverage information and esti-
mated risk value of each program method. As a result, the prioritization problem got
reduced to an integer linear programming problem, and this shows that their algo-
rithm is more effective than some well-studied TCP techniques.

Paruchuri et al. [13] examine that incorporating requirements in testing phase
could help a lot in finding the faults and errors easily. Although there are many pri-
oritizing techniques with using source code information, the effectiveness is not up
to the mark. The percentage of productivity has been increased to 80% by using
requirement information in prioritizing the test cases. Dipesh et al. [14] have also
discovered that rule mining and multi-objective search (named as REMAP) tech-
nique for dynamic test case prioritization can significantly outperform the other
approaches. Moreover, Yijie et al. [15] have experiment based on GUI software
features such as event handler and function call graph using two centrality measures
(degree centrality and betweenness centrality and found that the combination of
centrality method and existing conventional method has a high potential for improv-
ing prioritization effect.

Qi Luo et al. [16] investigated the performance of static and dynamic prioritiza-
tion techniques on modern software systems by selecting four static and state of
research dynamic techniques. As per experimental results on two evaluation metrics
(APFD and APFDc), it showed that these metrics incline to correlate test-class gran-
ularity, but this correlation does not hold at test-method granularity. Moreover,
static prioritization techniques better perform when evaluation is using APFDc.
When TCP techniques are applied on large-scale programs, they perform better, yet
the size of the program does not affect the performance measure between tech-
niques while comparing them. The performance result between TCP techniques
does not be impacted by software evolution. Regarding the effect of mutants, both
the number and type of mutant applied do not affect measures at TCP effectiveness
under experimental settings. The illustration of similarity analysis shows that highly
prioritized test cases tend to uncover unrelated faults.

Even though there are a bunch of researches on optimal technique, it seems that
it is potentially promising for the improvement of TCP, and some studies indicated
that optimal technique is not that beneficial in terms of fault detection rate on execu-
tion time [17]. As regression testing is not a one-time activity, prioritizing test cases

A Heuristic-Based Test Case Prioritization Algorithm Using Static Metrics

48

using historical information about test case performance record or historical fault
information was also explored by researchers [18].

Coverage aware prioritization techniques aim to maximize coverage of program
elements (statement/branch/methods, etc.) by a test case. They require detailed
knowledge of source code. Rothermelet al. [19] showed that better coverage yields
better fault detection rate. In addition to this, prioritization using dynamic coverage
information collected from early versions performs better than those using static
coverage information [20]. The limitation of these works was that it considered all
faults of the same severity and did not incorporate the cost factor. Also [10] testifies
that mutation-based prioritization technique addressed the major drawback of
branch coverage-based prioritization technique which is assigning lower priority for
the test cases that expose maximum number of faults; hence, in mutation-based TCP
technique, higher priority is assigned to those test cases.

3 � The Proposed Prioritization Algorithm (StatPriori)

 Input: Program with initial test suite TS, Cyclomatic Complexity
C, Halsted’s Metrics Volume as Vol, and Halsted’s Metrics
Vocabulary as Voc.
 Output: Prioritized test cases
 1. for(TS ϵ P) do
 2. for(Taϵ TS) do
 3. for(a ϵ n)
 4. i←a
 5. k←a+1
 6. for(k ϵ a) do
 7. if(Ci < Ck)
 8. i←k
 9. else if(Ci == Ck)
 10. if(Voli < Volk)
 11. i←k
 12. else if(Voli == Volk)
 13. if(Voci < Vock)
 14. i←k
 15. Swap(Ta, Ti)
 16. TS’← TS
 17. return TS’

The above written algorithm takes the program test suite with corresponding
metrics value as initial input, and it is expected to return the prioritized algorithm
which is the main objective of this research. After taking its initial input, it checks
the value of the metric of every test case in the test suit to assign priority. The com-
pression is based on three metrics which are more concerned about faults,

D. Getachew et al.

49

•	 McCabe Cyclomatic complexity concerns that the highest the Cyclomatic com-
plexity the highest there is a probability of faults in that segment. According to
prior researches like [21, 22], it claims that there is a correlation between the
complexity of the system and the number of faults.

•	 Halstead’s volume metrics tells that the highest the volume of the program the
highest the count of the number of mental comparisons required to generate a
program [23], which could lead the implementation of the algorithm being faulty
and that need early execution.

•	 Also, Halstead’s vocabulary of a program segment tells about how many tokens
could be in that segment of the program. The higher the vocabulary the higher
having token diversity, which could lead faulty tokens to be included (Fig. 1).

Start Test Suite

Filter test case
from test suite

Yes

Yes

Yes

Prioritized Test Suite

Stop

Assign priority

Check if
Completed

Yes

No

No

No

No

Highest CC
isFound ()

Highest Vol
isFound ()

Highest
Voc

isFound ()

Randomly select
from the two

Fig. 1  Flowchart of the algorithm

A Heuristic-Based Test Case Prioritization Algorithm Using Static Metrics

50

Having these three metrics the algorithm compares the test cases with the condi-
tion when two test cases are compared, and the test case having the highest
Cyclomatic complexity will get the highest priority, but if both have equal
Cyclomatic complexity, the algorithm will compare their volume, and the one which
has the highest volume will get the highest priority again if tie condition occurs for
the third time, and it will check the vocabulary and gives the highest priority to the
one having the highest value of vocabulary. After these three metrics comparison if
there is a probability of tie condition happening between two test cases, it will give
priority based on their previous position. Generally, the algorithm works by sorting
based on the metrics by swapping their positions.

Nonetheless, TCP techniques without coverage information have shown promis-
ing results, and it is still not that popular. Collecting coverage information is a costly
effort in terms of time, effort, and cost [18]. Because of this, many researchers are
trying to avoid this step. In all the literature, the authors use JUnit. Though TestNG
is released long back, to the best of our knowledge there is no research conducted
on TestNG specifically in the area of test case prioritization.

4 � Experiment and Result

For each subject program, we executed the algorithm based on the test suite pool
based on the test cases and the generated faults by comprising three benchmark
algorithms, namely, random approach, greedy algorithm based on the statement
coverage, and method-total prioritization technique which we use method coverage
information to prioritize test cases. So, we had fair comparison because it is our
exception case as we claim on our title. The random approach is employed in our
experiment just by rearranging the default order of the test cases in our test suite of
subject programs. So while arranging the called statements of the test case, we
examine statement coverage of each test case, and we order the test cases based on
the highest the statement coverage value the highest the priority will be, and by that
we generate a greedy algorithm-based prioritized test suite pool. For the method-
total technique, we record the trace of test case method coverage after execution,
like the greedy approach we rearrange the test cases in descending order of method
coverage value.

The experimental setup for the implemented model is executed on a PC with an
Intel Core i5 2.40 GHz and 8 GB memory running on Windows 10 operating sys-
tem, and all the execution takes place on the TestNG framework. The priorities
obtained from these three algorithms were assigned for each test case using @Test
annotation using the “priority” attribute. After the execution of each test case, we
record the test case—fault combination on excel from the report generated by
TestNG so that we can calculate the APFD result of each algorithm later.

D. Getachew et al.

51

4.1 � Result

Based on the size of the test suite pool of the subject program, we record different
sizes of test cases for the percentage of test case fraction on 15 intervals for each
subject program. The number of test cases in each interval is defined based on the
size of test cases in the test suite pool ranging from 5 to 15. The result recorded for
each subject program by applying the algorithms is recorded as follows (Tables
1 and 2).

Table 1  Percentage of faults detected per percentage of test suite fraction of Store Project and
Grade Book

Store project Grade book
PTSF Random GA MTT StatPriori Random GA MTT StatPriori

0 0 0 0 0 0 0 0 0
0.083 7.55 9.26 13.2 15.09 6.25 9.375 15.62 18.75
0.166 15.09 16.98 28.3 26.42 12.5 15.62 25 31.25
0.249 20.75 24.53 33.96 30.19 15.62 31.25 34.38 50
0.332 30.2 32.08 37.73 37.74 21.87 40.62 46.88 53.125
0.415 35.84 39.62 41.5 47.17 31.25 40.62 56.25 68.75
0.498 41.51 49.06 56.6 60.38 34.38 50 65.63 68.75
0.581 52.83 58.49 81.13 83.02 43.75 56.25 81.25 87.5
0.664 64.15 69.81 88.68 92.45 53.12 65.63 96.88 93.75
0.747 81.13 84.9 98.11 100 65.63 78.12 100 100
0.83 88.67 96.23 100 100 84.37 90.62 100 100
0.913 98.11 100 100 100 96.87 96.87 100 100
1 100 100 100 100 100 100 100 100

Table 2  Percentage of faults detected per percentage of test suite fraction of Sudoku Program
and STACK

Sudoku program STACK
PTSF Random GA MTT StatPriori Random GA MTT StatPriori

0 0 0 0 0 0 0 0 0
0.083 5.13 7.7 12.83 12.83 6.98 11.63 18.61 27.91
0.166 7.7 15.4 23.08 20.52 13.96 16.28 25.58 37.21
0.249 20.52 25.65 30.77 38.46 18.61 20.94 34.88 39.53
0.332 25.65 35.9 43.59 48.72 30.24 30.24 44.19 51.16
0.415 35.9 48.72 61.54 66.67 41.87 30.24 53.49 58.14
0.498 43.59 53.85 61.54 76.93 48.84 48.84 62.8 62.79
0.581 53.85 64.1 76.93 84.62 58.14 60.47 69.77 76.74
0.664 58.98 66.67 87.18 89.74 74.42 76.75 88.37 88.37
0.747 71.8 82.06 97.44 100 83.73 90.7 95.35 93.02
0.83 87.18 94.88 100 100 95.35 95.35 100 97.67
0.913 92.31 100 100 100 100 100 100 100
1 100 100 100 100 100 100 100 100

A Heuristic-Based Test Case Prioritization Algorithm Using Static Metrics

52

The above two tables showed the result recorded while executing three of bench-
mark prioritization techniques and StatPriori on the subject programs. PTSF stands
for percentage of test suite fraction. The second column labeled with random holds
the percentage of faults detected while applying random prioritization technique,
GA represents greed algorithm, the column labeled with GA presents the percent-
age of faults detected while applying greedy prioritization approach using statement
coverage, MTT stands for method-total technique, the column presents the faults
detected while applying method-total technique, and the column labeled with
StatPriori presents the result obtained while applying StatPriori algorithm. The fol-
lowing section discusses each subject program and the TCP techniques performance
in each subject program.

4.1.1 � Store Project

On the result table, the performance of the TCP techniques when applied on Store
Project test suite pool is recorded with 11 test case execution interval. As we can see
from Table 3 after executing 22–33%, less than 25% of faults were detected, while
the greedy algorithm applied on 13 out of 53 faults was detected, and the fault detec-
tion rate of StatPriori was slightly higher than 30%. Surprisingly, MTT detects 18
out of 53 after executing 33 test cases, and that’s 33.96% of the total faults seeded.
However, after executing 50% of test cases, StatPriori reaches 60% of fault detec-
tion, and yet random and GA were less than 50% detection rate, and even MTT
approach was able to detect 56.6% of test cases. MTT requires at most 110 out of
132 test cases, StatPriori requires almost 99 test cases to be executed, and the ran-
dom and GA approach require almost 132 and 121 test cases to be executed to
detect all the faults. The APFD result is examined on.

The APFD result obtained from the implementation of Store Project showed that
StatPriori prioritization technique outperforms all the three benchmark prioritiza-
tion techniques. The performance gap between MTT and StatPriori when compared
with random and greedy algorithm is more than 8%. The performance of StatPriori
is examined as 62.02%, yet the list performance was 49.02% resulted by random
prioritization technique (Fig. 2).

4.1.2 � Grade Book

Grade Book was the largest subject program based on the line of codes that contain
and test pool size. The execution result presented in Table 4 was recorded at 15 test
case execution so that each row of the table contains 15 test cases. As we can see

Table 3  APFD result of obtained at Store Project execution

Random (%) GA (%) MTT (%) StatPriori (%)

APFD 49.02 52.77 60.92 62.02

D. Getachew et al.

53

120

100

80

60

40

20

0

0
0.

08
3

0.
16

6
0.

24
9

0.
33

2

Random GA

PERCENTAGE OF TEST SUITE FRACTION

P
E

R
C

E
N

T
A

G
E

 O
F

 F
A

U
LT

S
 D

E
T

E
C

T
E

D
Store Project

MTT StatPriori

0.
41

5
0.

49
8

0.
58

1
0.

66
4

0.
74

7
0.

83
0.

91
3 1

Fig. 2  APFD chart of the Store Project execution

Table 4  APFD result of obtained at Grade Book execution

Random (%) GA (%) MTT (%) StatPriori (%)

APFD 43.18 52.26 64.46 68.61

from the execution results, MTT detects 25% of faults after executing almost 30 test
cases, and yet the random and greedy approach detects four and five faults, respec-
tively. StatPriori detects 50% of faults seeded by executing 30% of test cases.
However, greedy algorithm needs 50% to reach this level of fault detection. The
random and greedy approach needs 100% of test cases to be executed, yet both
MTT and StatPriori need 75% of test cases to be executed to detect all the test cases.
The following table presents the APFD result of the execution.

In this subject program, the performance of StatPriori is higher than Store
Project, and the random prioritization approach performs lower than Store Project.
The percentage gap between MTT and StatPriori exceeds more than 4%, which
MTT and StatPriori showed 64.46% and 68.61%, respectively (Fig. 3).

4.1.3 � Sudoku Program

As presented in Table 5, the performance of the algorithms is recorded while apply-
ing them on the Sudoku Program. The result is recorded at six test case execution
interval. At the very beginning of the executions, MTT shows better performance by
detecting 9 out of 39 faults at the rate of 23.08%. Furthermore, the performance of
StatPriori, GA, and random prioritization were 20.52, 15.4, and 7.7, respectively.
The performance rate of MTT gets stuck at 61.54% when it reaches 41.66% till it

A Heuristic-Based Test Case Prioritization Algorithm Using Static Metrics

54

120

100

80

60

40

20

0

0
0.

08
3

0.
16

6
0.

24
9

0.
33

2

Random GA

PERCENTAGE OF TEST SUITE FRACTION

P
E

R
C

E
N

T
A

G
E

 O
F

 F
A

U
LT

S
 D

E
T

E
C

T
E

D
Grade Book

MTT StatPriori

0.
41

5
0.

49
8

0.
58

1
0.

66
4

0.
74

7
0.

83
0.

91
3 1

Fig. 3  APFD chart of the Grade Book execution

Table 5  APFD result of obtained at Sudoku Program execution

Random (%) GA (%) MTT (%) StatPriori (%)

APFD 46.25 53.92 62.22 65.84

reaches 50%. However, StatPriori requires almost 54 test cases to complete the
whole execution, but MTT requires six additional test cases to finish its execution.
Moreover the performance of random and greedy algorithms was better than earlier
execution, but it was at a lower performance level of the current execution.

The performance of StatPriori recorded on this subject program is less than
Grade Book program and better than Store Project, and the vice versa is true for
random prioritization approach. Surprisingly StatPriori performs better on this pro-
gram too, and the performance rate was 65.84%. Regardless of the performance at
the beginning of the execution, MTT exhibits the next better performance rate at
62.22% (Fig. 4).

4.1.4 � STACK

The recorded result with interval of five test case execution while applying the algo-
rithms on STACK program shows that random and greedy algorithm prioritization
approach performs the same 30.24% detection rate while executing 20 of 60 test
cases, at the same execution level StatPriori achieves more than 50% of fault detec-
tion. Also after executing 40 test cases, MTT and StatPriori reach at same detection

D. Getachew et al.

55

120

100

80

60

40

20

0

0
0.

08
3

0.
16

6
0.

24
9

0.
33

2

Random GA

PERCENTAGE OF TEST SUITE FRACTION

P
E

R
C

E
N

T
A

G
E

 O
F

 F
A

U
LT

S
 D

E
T

E
C

T
E

D

Sudoku Progran

MTT StatPriori

0.
41

5
0.

49
8

0.
58

1
0.

66
4

0.
74

7
0.

83
0.

91
3 1

Fig. 4  APFD chart of the Sudoku Program execution

Table 6  APFD result of obtained at STACK execution

Random (%) GA (%) MTT (%) StatPriori (%)

APFD 52.03 52.80 62.07 65.35

performance rate of 88.37%. Finally, three of the algorithms (random, greedy, and
StatPriori) required at most 55 test cases out of 60 to detect all of the faults in the
test suite pool. However, MTT requires only 50 test cases to reach 100% fault
(Table 6).

Fortunately, the execution completion of MTT was earlier than all of the applied
algorithms, yet the overall performance was not as efficient as StatPriori. MTT
achieves 62.07% of APFD result, but StatPriori achieves 65.35%. The performance
of random and GA was very close to each other, exhibiting 52.03% and 52.80%,
respectively (Fig. 5).

To have a quick recap of the above results, in each experiment the performance
of the algorithms was examined, and it is found that the algorithms can be consid-
ered from the lower to higher as from random ordering to our developed algorithm
(StatPriori) on each subject program but not compared to one another. On all of the
four subject program, the experiment shows that the fault detection rate is increased
and with minimum of 1.1% to maximum of 25.43% on Store Project and Grade
Book, respectively. The minimum performance of random prioritization algorithm
and the maximum performance of StatPriori were exhibited on Grade Book execu-
tion. Based on the APFD result obtained from the experiment, the comparison to
drive any conclusion the comparison must not be between subject programs, and if
it has to be between algorithms, it should be the performance of these algorithms
applied to the same subject programs. This is not only because each subject program

A Heuristic-Based Test Case Prioritization Algorithm Using Static Metrics

56

120

100

80

60

40

20

0

0
0.

08
3

0.
16

6
0.

24
9

0.
33

2

Random GA

PERCENTAGE OF TEST SUITE FRACTION

P
E

R
C

E
N

T
A

G
E

 O
F

 F
A

U
LT

S
 D

E
T

E
C

T
E

D
STACK

MTT StatPriori

0.
41

5
0.

49
8

0.
58

1
0.

66
4

0.
74

7
0.

83
0.

91
3 1

Fig. 5  APFD chart of the STACK execution

Table 7  Overall APFD result of each program on each algorithm

Random (%) GA (%) MTT (%) StatPriori (%)

Store Project 49.02 52.77 60.92 62.02
Grade Book 43.18 52.26 64.46 68.61
Sudoku Program 46.25 53.92 62.22 65.84
STACK 52.03 52.80 62.07 65.35
Minimum 43.18 52.26 60.92 62.02
Maximum 52.03 53.92 64.46 68.61
Average 47.62 52.94 62.42 65.46

has a different test suite pool size but also because the size of the subject programs
is different too (Table 7).

5 � Conclusion

The developed prioritization technique gives an order based on the comparison
between these static metrics which the test case having the highest Cyclomatic com-
plexity gets the highest priority, and if tie condition happens, the algorithm will
compare the Halstead volume metrics of the source code, and the one which has the
highest volume will get the highest priority again, and if another tie condition
occurs, then the algorithm goes to compare the Halstead vocabulary and the test
case which has highest vocabulary value will get the highest priority. Using multiple

D. Getachew et al.

57

fitness object to prioritize test cases will have a strong tie-breaking capability and
prioritize test cases; in this research using three fitness objectives to prioritize test
cases makes the developed algorithm perform better on breaking tie conditions. A
test case prioritization technique developed with static software metrics showed bet-
ter performance on the experiment conducted on four subject programs compared
with a random, greedy algorithm, and method-total algorithm. Even if the perfor-
mance of StatPriori showed better performance on both random and coverage-based
prioritization techniques, yet this result could be changed when it is implemented on
other subject programs and with other coverage-based programs. However, this
study could be used as a frame of reference to make wider exploration on the area.

References

1.	Mishra, D. B., Panda, N., Mishra, R., & Acharya, A. A. (2019). Total fault exposing potential
based test case prioritization using genetic algorithm. International Journal of Information
Technology, 11(4), 633–637.

2.	Software & Systems Engineering Standards Committee | IEEE Computer Society. https://
www.computer.org/volunteering/boards-and-committees/standards-activities/committees/
s2esc. Accessed 16 Aug 2020.

3.	Mishra, D. B., Mishra, R., Acharya, A. A., & Das, K. N. (2019). Test case optimization and pri-
oritization based on multi-objective genetic algorithm. In Harmony search and nature inspired
optimization algorithms (pp. 371–381). Springer/H. Pham, Software Reliability/Wiley.

4.	Mukherjee, R., & Patnaik, K. S. (2019). Prioritizing JUnit test cases without coverage infor-
mation: An optimization heuristics based approach. IEEE Access, 7, 78092–78107. https://doi.
org/10.1109/ACCESS.2019.2922387

5.	Yoo, M. H. S. (2010). Regression testing minimization, selection and prioritization: A survey.
Software Testing, Verification and Reliability, 7, 1–30. https://doi.org/10.1002/000

6.	Dan, H., Lu, Z., & Hong, M. (2016). Test-case prioritization: Achievements and challenges.
Frontiers of Computer Science, 10(5), 769–777. https://doi.org/10.1007/s11704-016-6112-3

7.	Di Nucci, D., Panichella, A., Zaidman, A., & De Lucia, A. (2020). A test case prioritiza-
tion genetic algorithm guided by the hypervolume indicator. IEEE Transactions on Software
Engineering, 46(6), 674–696. https://doi.org/10.1109/TSE.2018.2868082

8.	Khatibsyarbini, M., Isa, M. A., Jawawi, D. N. A., Hamed, H. N. A., & Mohamed Suffian,
M. D. (2019). Test case prioritization using firefly algorithm for software testing. IEEE Access,
7, 132360–132373. https://doi.org/10.1109/ACCESS.2019.2940620

9.	Farooq, F., & Nadeem, A. (2017). A fault based approach to test case prioritization. In
Proceedings – 2017 international conference on frontiers of information technology. FIT 2017
(pp. 52–57). https://doi.org/10.1109/FIT.2017.00017

10.	Lei, X., Huaikou, M., Weiwei, Z., & Shaojun, C. (2017). An empirical study on cluster-
ing approach combining fault prediction for test case prioritization (pp. 815–820). IEEE
Computer Society.

11.	Fu, W., Yu, H., Fan, G., Ji, X., & Pei, X. (2018). A regression test case prioritization algorithm
based on program changes and method invocation relationship. In Proceedings – Asia-Pacific
software engineering conference. APSEC (Vol. 2017, pp. 169–178). https://doi.org/10.1109/
APSEC.2017.23

12.	Ramya, P., Sindhura, V., & Vidya Sagar, P. (2018). Clustering based prioritization of test cases.
In Proceedings of international conference on inventive communication and computational
technologies. ICICCT 2018 (pp. 1181–1185). https://doi.org/10.1109/ICICCT.2018.8473253

A Heuristic-Based Test Case Prioritization Algorithm Using Static Metrics

https://www.computer.org/volunteering/boards-and-committees/standards-activities/committees/s2esc
https://www.computer.org/volunteering/boards-and-committees/standards-activities/committees/s2esc
https://www.computer.org/volunteering/boards-and-committees/standards-activities/committees/s2esc
https://doi.org/10.1109/ACCESS.2019.2922387
https://doi.org/10.1109/ACCESS.2019.2922387
https://doi.org/10.1002/000
https://doi.org/10.1007/s11704-016-6112-3
https://doi.org/10.1109/TSE.2018.2868082
https://doi.org/10.1109/ACCESS.2019.2940620
https://doi.org/10.1109/FIT.2017.00017
https://doi.org/10.1109/APSEC.2017.23
https://doi.org/10.1109/APSEC.2017.23
https://doi.org/10.1109/ICICCT.2018.8473253

58

13.	Pradhan, D., Wang, S., Ali, S., Yue, T., & Liaaen, M. (2018). REMAP: Using rule mining
and multi-objective search for dynamic test case prioritization. In Proceedings – 2018 IEEE
11th international conference on software testing, verification and validation. ICST 2018
(pp. 46–57). https://doi.org/10.1109/ICST.2018.00015

14.	Y. Ren, B. B. Yin, and B. Wang, “Test case prioritization for GUI regression testing based on cen-
trality measures,” Proceedings of international computer software and applications conference,
vol. 2, 61402027, pp. 454–459, 2018, doi: https://doi.org/10.1109/COMPSAC.2018.10275.

15.	Luo, Q., Moran, K., Zhang, L., & Poshyvanyk, D. (2019). How do static and dynamic test
case prioritization techniques perform on modern software systems? An extensive study on
GitHub projects. IEEE Transactions on Software Engineering, 45(11), 1054–1080. https://doi.
org/10.1109/TSE.2018.2822270

16.	Dan, H., Lu, Z., Lei, Z., Yanbo, W., Xingxia, W., & Tao, X. (2016). To be optimal or not in test-
case prioritization. IEEE Transactions on Software Engineering, 42(5), 490–504.

17.	Fazlalizadeh, Y., Khalilian, A., Abdollahi Azgomi, M., & Parsa, S. (2009). Prioritizing test
cases for resource constraint environments using historical test case performance data. In
Proceedings – 2009 2nd IEEE international conference on computer science and information
technology. ICCSIT 2009 (pp. 190–195). https://doi.org/10.1109/ICCSIT.2009.5234968

18.	Do, H., Rothermel, G., & Kinneer, A. (2006). Prioritizing JUnit test cases: An empirical
assessment and cost-benefits analysis. Empirical Software Engineering, 11(1), 33–70. https://
doi.org/10.1007/s10664-006-5965-8

19.	Zhou, J., & Hao, D. (2017). Impact of static and dynamic coverage on test-case prioritization:
An empirical study. In Proceedings – 10th IEEE international conference on software testing,
verification and validation workshops. ICSTW 2017 (pp. 392–394). https://doi.org/10.1109/
ICSTW.2017.74

20.	Ammar, H. H., Nikzadeh, T., & Dugan, J. B. (1997). A methodology for risk assessment of
functional specification of software systems using colored Petri nets. In Proceedings of the 4th
international symposium on software metrics (p. 108).

21.	Munson, J. C., & Khoshgoftaar, T. M. (1996). Software metrics for reliability assessment. In
Handbook of software reliability engineering (pp. 493–529). McGraw-Hill, Inc.

22.	Halstead, M. H. (1977). Elements of software science. Elsevier North-Holland, Inc.
23.	Henard, C., Papadakis, M., Harman, M., Jia, Y., & Le Traon, Y. (2016). Comparing white-box

and black-box test prioritization. In Proceedings of international conference on software engi-
neering (pp. 523–534). https://doi.org/10.1145/2884781.2884791

D. Getachew et al.

https://doi.org/10.1109/ICST.2018.00015
https://doi.org/10.1109/COMPSAC.2018.10275
https://doi.org/10.1109/TSE.2018.2822270
https://doi.org/10.1109/TSE.2018.2822270
https://doi.org/10.1109/ICCSIT.2009.5234968
https://doi.org/10.1007/s10664-006-5965-8
https://doi.org/10.1007/s10664-006-5965-8
https://doi.org/10.1109/ICSTW.2017.74
https://doi.org/10.1109/ICSTW.2017.74
https://doi.org/10.1145/2884781.2884791

59

A Literature Review on Software Testing
Techniques

Kainat Khan and Sachin Yadav

1 � Introduction

The evolution and making of big software products include various tasks that must
be synchronized to fulfil desired needs. Software testing is a crucial task in SDLC
phases. It’s a method of assessing software in order to identify bugs/errors in the
program. Software testing is performed to analyze if the software product fulfils the
specified quality requirements or not, and there are a series of steps in which it is
developed to ensure that the code of the program does what it specifies. It also
checks and validates the working of a software program. Software testing is done to
check the other quality factors (ability/potential, trustworthiness, righteousness,
constancy, usefulness, proficiency, cost-effectiveness, transferability, maintainabil-
ity, similarity, etc.). For the past years and till now, everyone is working with similar
techniques. Testing is an expensive process as it requires skilled testers as well as
advanced and latest technology tools. Testing a software, targets attaining specific
objectives and principles that need to be chased. Some of the objectives of testing
involves the following:

•	 The better the software performs, the more effectively testing is carried out.
•	 When there are less changes in software code, there will be less interruption and

delays [16].
•	 Demonstrate: Testing illustrates functions that are under some specific condi-

tions/rules and coveys that the software product is ready to use.
•	 Detect: It identifies faults and the errors present in it [8].

K. Khan (*)
Department of Computer Science, Delhi Technological University, Delhi, India

S. Yadav
School of Engineering Technology, Noida International University,
Noida, Uttar Pradesh, India

© Springer Nature Switzerland AG 2022
M. Khari et al. (eds.), Optimization of Automated Software Testing Using
Meta-Heuristic Techniques, EAI/Springer Innovations in Communication and
Computing, https://doi.org/10.1007/978-3-031-07297-0_5

https://doi.org/10.1007/978-3-031-07297-0_5

60

•	 Prevention: It presents data to curb and decrease the errors to improve system
performance.

•	 Improvement in quality: With the support of efficient testing, the software qual-
ity upgrades.

2 � Review Methodology

This section involves the study of methods used and presented in the paper. The
whole research work presented in this work is partitioned into various phases, that
is, the initial stage where planning is done, and based on that many research ques-
tions (RQ) were framed, and then in the next phase, research works were shortlisted.
In the final phase, that is, third stage, all the research questions were answered
(Fig. 1).

2.1 � Planning

The test suite contains a huge amount of test cases, and executing them is an annoy-
ing task. Many researches have been done to minimize this annoying task. The test
suite is minimized by removing the redundant test cases and removing those cases
which are no longer needed, or the functionality has been removed in the updated
version of the software.

2.1.1 � Searching Process

The search process starts by going through a lot of different online sites, search
engines, and journals. Many research works published by scholars were explored
with the help of IEEE Xplore, Springer, Google Scholar, and Scopus. Relevant

searching process (using keywords)Planning
• framing of research questions

excluding unrelated study (inclusion/excluding criteria)Conducting
• Distribution of Papers

providing answers to the research questions.Reporting

Fig. 1  Review process

K. Khan and S. Yadav

61

keywords like “software testing techniques” and “software testing tools” were
applied to fetch similar works, and in this study, the search was limited to the time
period between 2007 and 2020. The search process is done by framing and using
keywords that are given below:

 (SoftwareTesting OR SoftwareTestingTechniques OR
(TechniquesUsedInSoftwareTesting) AND (SoftwareTestingTools OR
 TestingTools)

After the completion of the search processes, the next step is to frame the research
questions.

2.1.2 � Formulation of Research Questions

Many RQs were uplifted while determining and evaluating the preselected studies.
All the RQs were appropriately framed to preserve the flow of information in the
study and to circumvent discrepancy while studying the broad information gained
from the shortlisted papers. Table 1 gives the series of RQs [2, 4, 15].

2.2 � Conducting Phase

This portion involves the tasks conducted in the performing phase of literature
review. This section also provides the criteria applied while filtering out the studies
based on their relevance. Additionally, a research questionnaire was prepared to
represent the study conducted. Graphs and pie charts were made to represent the
selected studies.

Table 1  Research questions

S. no Research questions

1. What is the need and benefit of software testing [10, 16, 17]?
2. What are the principles of software testing [11, 22]?
3. What are the phases involved in software testing life cycle [15]?
4. What are the various types of software testing [15, 24]?
5. What are various software testing techniques [1, 29]?
6. What types of bugs are present in software testing [9, 15]?
7. What are the latest software testing tools [1, 22]?
8. What are the different test case design techniques [28]?

A Literature Review on Software Testing Techniques

62

2.2.1 � Excluding Unrelated Study

All the research work is maintained in a sequential manner, and ambiguous and
unrelated studies were neglected. As this work is related to software testing tech-
niques, there were an acceptance and excluding criteria to shortlist papers based on
software testing techniques.

Acceptance criteria are as follows:

	1.	 Studies that relate to software testing methodologies
	2.	 Studies that mentioned different software testing tools
	3.	 Studies that relate to STLC (software testing life cycle)
	4.	 Studies that cover the major portion of software testing types and the test case

design techniques

Excluding criteria are as follows:

	1.	 Studies that didn’t target software testing techniques and types
	2.	 Studies that belong to the years other than the time period of 2007–2020
	3.	 Studies that do not related to the framed research questions (as mentioned in

table above)

2.2.2 � Distribution of Papers

The research studies were partitioned into three parts based on the source of their
publication. The sources taken into consideration were journals, conference, and
some other work like workshops, chapters, symposium, etc. Initially 80 research
papers were downloaded, and from those 80 papers, 49 studies were shortlisted. The
division of work is shown by using pie chart. The pie chart is based upon the overall
research paper studies (not on the shortlisted ones) (Fig. 2).

•	 As Per Year of Publication

22%

62%

16%

Conference Journal OtherFig. 2  Distribution of
papers

K. Khan and S. Yadav

63

0
1
2
3
4
5
6
7
8
9

2006 2007 2008 2009 2010 2011 2012 2013 2014 201 5 2016 2017 2018 2019 2020

year of publica�on

Publica�on year ->

Fig. 3  Arrangement of papers on the basis of their publication year

Multiple studies have been done since past years in the field of “software testing
techniques.” The selected research works lie in the years 2006–2020 (Fig. 3).

2.3 � Reporting of Research Questions

RQ1: What are the needs and benefits of software testing?

Software generation includes developing a software with set specification.
Software testing procedure is essential to verify as well as to validate the resulted
software (to look if it meets all requirements specified, otherwise we will lose our
customer). To make sure that we give all of our customers an appropriate software
solution, we opt for testing. Testing guarantees that the end product exactly matches
the set of requirements and what we actually wanted to make [19, 25].

The demand for conscientious testing and its related work during the SDLC
phase appears due to the mentioned reasons [18]:

•	 To detect defects.
•	 To decrease imperfection in the system.
•	 To hike the comprehensive standard/quality of the system.

These points below tell us the importance of testing for an authentic and useful
software product [7].

•	 To acquire user insight: Software testing ensures that the software made is easy
to use (user-friendly). Testers who are specialized in testing software know the
requirements of users, and if the software cannot satisfy the user’s requirement,
then it is useless investment [20].

•	 To test software ability: A lot of different devices, OS, and browsers are present,
so it is essential to check whether the software is compatible with others or not,
and this step gives a smooth and good user experience.

A Literature Review on Software Testing Techniques

64

•	 To detect errors: Testing a software helps to get rid of errors before the product
delivery because the chances of having any kind of error are always present.

•	 To hike the software development process: Spending a lot of time on the devel-
opment process is not a good practice. Software should be timely deliverable [4].

•	 To keep away software from risk: Software must be free from loopholes; other-
wise it will lead to loss of data.

•	 To enhance business: When the software is of good quality, it helps the brand to
gain good reputation as well as profit.

•	 Cost-effective: It is also a crucial benefit of testing software. Additional charges
may give the user a bad experience. Testing before delivering helps the organiza-
tion to save a lot of bucks because when we identify bugs in the early stage, the
cost of fixing it gets reduced.

•	 Security: The most important benefit because everyone looks for software that
are trustworthy [12].

RQ2: What are the principles of software testing?

Principle is a process in action which must be tracked. Testing principles are
mentioned below:

	1.	 Test all your program/software with the intent of making it fail or deteriorate:
Testing is the method of implementing a program/software in order to find prob-
lems in it, and we must do testing in such a way that it exposes all the failures
present in that software to make the process of testing more fruitful and
valuable[13].

	2.	 Testing must be done at an early stage: Testing that has been done in the early
phase helps in improving the quality and fixes enormous errors.

	3.	 Testing dependent on the context: Testing has to be proper to serve the desired
purpose. Various testing must be done at different time intervals [29].

	4.	 Plan clear test cases: Test case should be framed in such a format that is quantifi-
able, which will lead to unambiguous testing results [3].

	5.	 Check for valid and invalid input conditions: Along with the present valid inputs,
the invalid/unexpected conditions should also be checked.

	6.	 Testing should be carried out by various people at various stages: Various motives
are tackled at various stages of testing, so it is necessary to perform testing at
regular intervals.

	7.	 One has to stop the testing process at some point. We can put an end to testing
when there is a curb [23].

K. Khan and S. Yadav

65

Re
qu

ire
m

en
t

An
al

ys
is

Te
st

Pl

an
ni

ng

Te
st

 C
as

e
De

ve
lo

pm
en

t

En
vi

ro
nm

e-
nt

 S
et

up
Te

st

Ex
ec

u�
on

Te
st

 C
yc

le

Cl
os

ur
e

F
ig

. 4
 

L
if

e
cy

cl
e

of
 s

of
tw

ar
e

te
st

in
g

A Literature Review on Software Testing Techniques

66

RQ3: What are the phases involved in software testing life cycle? (Fig. 4)

1. �Requirement
analysis

This is the initial step in the STLC process, and here, the quality assurance
group/team acknowledges the fundamental needs or requirements of the
customer and determines the requirements that are testable, and in the
future, if any ambiguity arises, the QA team again collaborate and rectify
the problem. This part creates a framework for the test plan.

2. Test planning It is an essential and compulsory step as the test strategy is explained in this
phase because without this testing cannot be done. Test planning is more
inclined toward the functionality testing.

3.� Test case
development

Details of test cases are mentioned and created at this point. Accurate test
cases are made by QA group, but in several cases automatically generated
test cases are also considered.

4. �Environment
setup

Setting up of required software as well as hardware for testing team so that
the created test cases could implement.

5. Test execution It includes implementation of test cases depending upon the previously
made test plan (as it behaves as input). If the program clears this phase
without having any problem (bug), then it is said to be cleared; otherwise,
we will get to know about the error present in it. We process the code and
match the desired output with our result. The ultimate deliverable of this
phase is error or bug.

Test closure It is the final step involved in STLC. An analytical review is done in this
phase. The results of implemented test plan are validated, and further, the
decision is taken. The team that tests collaborate in order to analyze criteria
for cycle completion and that depends upon factors like quality, objective of
the business, coverage, and also the software.

RQ4: What are the various types of software testing?

Testing is a fundamental phase of a productive and booming software project.
Software testing is of many types which helps the tester to choose the most appro-
priate testing technique for the project that has to be built. The testing done by qual-
ity assurance team/software tester is of two types: functional and nonfunctional
(Fig. 5).

•	 Functional Testing

Functional testing is a part of software testing that validates whole functionality
of the software built in accordance with the specified requirements. This portion
targets on automated along with manual testing. Various types of functional testing
are as follows:

	1.	 Unit Testing: It is that stage of test at which a small single unit of a software is
tested. The main aim of unit testing is validating that every individual component
works and behaves as designed. A unit/component has mostly one or sometimes
more than one input and generally one output [32].

Advantages

	(a)	 Debugging of software is not complicated.

K. Khan and S. Yadav

67

Types of so�ware
Tes�ng

Func�onal Tes�ng

Unit

Integra�on

System

Interface

Regression

User Acceptance
Tes�ng

Non-Func�onal
Tes�ng

Documenta�on Installa�on Performance

Load

Stress

Spike

Reliability Security

Fig. 5  Types of software testing

(b)	 Reusable codes are made. Advanced codes are required for making it
possible.

(c)	 Speedy development is done as well as less efforts are needed.
(d)	 Low cost is needed to fix defects.

	2.	 Integration Testing: At this stage of testing, all the previously made single units/
components are put together as they are tested as a whole combined group. The
main motive of doing integration testing is to identify and analyze faults present
between the units that are integrated.

Various methods are used for doing such type of testing:

(a)	 Top-down: When the uppermost (top level) units are tested and then the
lower-level units are tested, it is said to top-down approach.

(b)	 Bottom-up: It is just the opposite of top-down testing as in here lower-level
units are tested before the top-level units.

(c)	 Sandwich: It’s a fusion of both upper-level and bottom-up techniques.

	3.	 System Testing: At this point of software testing, the complete software is tested,
and this phase helps analyzing the software with the given requirements.

	4.	 Interface Testing: Software consists of various component, and those could be
anything like DB or a server. The network that connects and provides a facility
of communication among different units is called as interface. It checks whether
the communication is done properly or not (Fig. 6).

A Literature Review on Software Testing Techniques

68

Configura�on & Development Valida�on Maintenance

Fig. 6  Stages of interface testing

	5.	 Regression Testing: This is one of the most essential levels of testing for the end
product and also very helpful for the programmers to look for the reliability of
the object with the current needs. Regression testing is performed to check
whether the change in the code influences the functionality or not. Some of the
techniques of regression testing are as follows:

	(a)	 Retest all test cases
	(b)	 Regression test selection
	(c)	 Prioritizing test cases on the basis of its influence and criticality
	(d)	 Hybrid

	6.	 User Acceptance Testing: Here we test the software to check for its acceptability.
The purpose is to identify whether the software is acceptable for delivering to the
user or not. Alpha testing (when software is assessed by tester) and beta testing
(to check the software in real-world environment) are some types of user accep-
tance testing.

•	 Nonfunctional Testing

While developing and testing a software, there are some nonfunctional require-
ments also present, and they include performance, quality, etc.

	1.	 Documentation Testing: It is done to approximate the required testing efforts as
well as test coverage. The documentation consists of a test plan, test case, and
also gathering of needs/requirements [27].

	(a)	 Instructions: Some predefined rules are given for the associated work, that
is, having test scenarios.

	(b)	 Examples: Procedural examples are given for ease.
	(c)	 Messages.
	(d)	 Samples.

	2.	 Installation Testing: It is a quality assurance testing that deals with what the user
will require to download and how the new software will successfully set up.

	3.	 Performance Testing: It is done to verify whether the application is working as
expected or not under the given workload.

	(a)	 Load test: To analyze system behavior in the case of increased work
	(b)	 Stress test: To analyze system behavior in extreme conditions that are not

expected

K. Khan and S. Yadav

69

requirement
gathering prepare

plan design script execute analyse is goal
achieved

report
prepara�on final report

NO

Fig. 7  Steps in performance testing

INPUT OUTPUT

Fig. 8  Black box testing

	(c)	 Endurance test: To analyze system behavior when notable work is given
regularly

	(d)	 Spike test: To analyze system behavior when workload is promptly increased
(Fig. 7).

	4.	 Reliability Testing: It guarantees that the software is free from faults and is trust-
worthy for the purpose it made. Here types of testing such as feature test, regres-
sion test, load test, etc. are performed.

	5.	 Security Testing: In this, testing makes sure that resulted software is free from
any kind of loopholes. At this stage, we look for all the possible defects that the
software contains because it might lead to a huge loss of data.

RQ5: What are various software testing techniques?

The main software testing techniques are as follows:

	(1)	 Black Box Testing

This specific testing is performed to check/test the functioning of a program. The
alternative name of black box testing is behavioral or specification testing. In this,
we have a set of values, that is, the input values and the desired output values.

Input is given, and if its result is equivalent to the output we wanted, then the
working is said to be “ok”; otherwise there is some problem in the code. While
performing black box testing, the only thing that is known to the person who tests is
input values set and their output, but the internal functionality remains unknown
(Fig. 8).

A Literature Review on Software Testing Techniques

70

INPUT OUTPUT

Fig. 9  White box testing

The main aim of performing black box testing is to look for absent/incomplete
values, errors in performance, and also the errors that occur when the external DB
is accessed [9].

Advantages Disadvantages

�Tests are not biased �When requirements are not specified clearly,
designing of test cases gets difficult

�As soon as specifications are completed,
the test cases are designed

�For complex code structure black box testing cannot
be performed

�Accessing the code segment is not
needed

�Due to the limited access and knowledge, this
becomes inefficient

	(2)	 White Box Testing (Fig. 9)

It is done to check/test software and the way it is implemented so that the effi-
ciency and its structure could improve. The alternate names of white box testing are
structural/clear-box/transparent box/open box testing. Here, the tester knows whole
design/ internal structure of the program. The functioning of white box testing is
opposite of the black box. Because of the known components in white box testing,
it becomes simple and easy to find errors even when the software specifications are
incomplete. The motive of performing this testing is to make sure that all the test
cases include each and every path by going through the program. This further
assures that internal units are made as per the specified design [21].

Advantages Disadvantages

 � When testing is performed, it
accumulates bigger portion of the
program code

 � Because it covers a major portion of coding, it
might not be suitable for accessing functionality

 � It does not cover any error that is
typographical

 � As it is design based, there is a chance that it does
not focus on other problems occurring in the
system

 � It also identifies all the errors made
while designing

 � Whenever there is a modification in implantation,
all the test cases have to be modified

RQ6: What types of bugs are present in software testing?

Bugs in software testing are categorized into three parts, and those are defects
occurred by nature, due to priority and due to severity [26].

K. Khan and S. Yadav

71

•	 Software Bugs by Nature:

	1.	 Functional bugs: These are the problems analyzed when the software behav-
ior is not adaptable with the specified needs/requirements. These are identi-
fied while performing functional testing [13].

	2.	 Performance bugs: Bugs that are confined to the speed of the software, its
feedback/response time, its stability, and consumption of resource. These are
identified while doing performance testing. For example, if response
time > specified time (as given in requirements), it is said to performance bug.

	3.	 Usability bugs: This type of bugs makes the software inappropriate and prob-
lematic to use which leads to bad user experience.

	4.	 Compatibility bugs: A software with compatibility problems is inconsistent in
terms of performance on specific device, OS, hardware, and browsers. To
tackle and to find out such problems, compatibility testing is done [27].

	5.	 Security bugs: This relates to the weakness of a software that allows attackers
to break security of software.

•	 Software Bugs due to Severity:

	1.	 Critical problems/defects: They obstruct the whole functionality of a system
which forces testing to stop without the bug being resolved.

	2.	 High severity bugs: They affect the main functioning of software application,
and they work in a way that is opposite as stated in requirement.

	3.	 Medium severity bugs: When a minor portion of the function does not work
properly.

	4.	 Low severity bugs: It is basically linked to software application’s user
interface.

•	 Software Bugs by Priority:

	1.	 Urgent defects: Such defects must be resolved within a specified time which
is usually 24 hours after it has been reported. Problems that are crucial lie in
this group.

	2.	 High priority bugs
	3.	 Medium priority bugs
	4.	 Low priority bugs

RQ7: What are the latest testing tools?

	1.	 Selenium: It acts as a base for a lot of tools used in software testing.

It provides a structure/framework to carry out testing among different brows-
ers/platforms (Linux, windows, etc.).
It has some extra features in it like recording and playback.
Testers can write test cases in different programming language as it is sup-
ported by selenium [30].

A Literature Review on Software Testing Techniques

72

	2.	 TestComplete: It is a platform for performing functional testing. It provides
results for automate testing.

It also offers features of recording and playback like selenium does. It has
some additional features like GUI testing.

	3.	 TestingWhiz: It is an automation tool.

It authorizes to automate user interface and functions to examine the func-
tionality of applications.
It delivers organized interface to provide effective user experience.
It permits to check the DB of an application by various methods [31].

	4.	 Ranorex: It provides a lot of different automation tools for testing all kinds of
mobile and desktop applications.

It offers features like bug detection.
In Ranorex test codes are reusable.
It has features like GUI recognition and image comparison.
It can quickly make, implement, and deliver a reliable automated GUI (with/
without coding).
Test creations can be made codeless.
Good and efficient customer support.

	5.	 Sahi: It is used to automate application on web.

It is an open-source tool.
It supports multi-browser testing.
Like other tools, it also has features of recording and playback.

RQ8: What are the different test case design techniques?

Designing a test case means the way in which test cases are set up. The main
motive of designing test cases is to check the functioning and its features.

TEST CASE TECHNIQUES

BLACK BOX/ SPECIFICATION BASED

WHITE BOX/ STRUCTURE BASED

EXPERIENCE BASED

Fig. 10  Test case techniques

K. Khan and S. Yadav

73

They are classified into three parts (Fig. 10):

•	 Specification Based

	1.	 Boundary Value Analysis (BVA): BVA helps in exposing errors present at the
edges of input. The input values are partitioned into maximum and minimum
values. It finds out errors that obstructs the functionality of a program.

	2.	 Equivalence Partitioning: In this, the test data (input) is divided into various
classes with equal number of information/data [27].

In the next step, for each partition, the test cases are designed. It permits to
find valid/invalid classes.

	3.	 Decision Table: The alternative name of decision table testing is cause-effect
table testing. Based on the decision table, test cases are made which were gener-
ated with the help of various combinations of data (input and output data).

	4.	 State Transition: When there is a change in the conditions of input, the respective
AUT also changes. This helps to check the performance of AUT.

	5.	 Use Case Testing: It is a specification of a specific use of program by the cus-
tomer. Various test cases are designed to tackle various scenarios.

•	 Structure-Based Testing

	1.	 Statement Testing and Coverage: Each and every statement in the software
program code are implemented at least once. As per the specified require-
ments, the percentage of statement is computed [24].

	2.	 Decision Testing Coverage: The alternative name of decision testing coverage
is branch coverage. In this, from every decision point all possible branches are
executed at least once. This assists in validation of every branch in code.

	3.	 All Path Testing: This testing helps in finding and analyzing each and every
fault in the code.

•	 Experience-Based Testing

This technique depends upon the experience of the tester.

	1.	 Guessing the Error: The tester finds faults and errors depending upon their past
experience, data available, and knowledge.

3 � Conclusion

Testing is one of the most crucial sections of SDLC, because the end delivery of
software product is dependent upon it. Testing a software is not a simple process
because it needs a lot of time and effort as it is an exhaustive process. It requires
advanced and latest technologies. With the help of the latest software testing tools
and technologies, testing is performed more appropriately [6].

•	 Testing a software is the most fundamental task of software engineering.

A Literature Review on Software Testing Techniques

74

•	 Testing is performed to make sure and to raise the likelihood of profit rate of
software product.

•	 Testing is a continuous and endless process.
•	 Testing only identifies the existence of faults/errors, not its exclusion.
•	 It is a task that implements software code with the motive of analyzing and

exploring errors in the code.
•	 This work outlines the techniques used in software testing and various strate-

gies of it.

References

1.	Anitha, A. (2013). A brief overview of software testing techniques and metrics. [Online].
Available: www.ijarcce.com

2.	Anwar, N., & Kar, S. (2019). Review paper on various software testing techniques & strategies.
3.	Atifi, M., Mamouni, A., & Marzak, A. (2017). A comparative study of software testing tech-

niques. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 10299, 373–390., LNCS. https://doi.
org/10.1007/978-3-319-59647-1_27

4.	Babbar, H. (2017). Software testing: Techniques and test cases. [Online]. Available: www.
ijrcar.com

5.	Baresi, L., & Pezzè, M. (2006). An introduction to software testing. Electronic Notes in
Theoretical Computer Science, 148(1 Special Issues), 89–111. https://doi.org/10.1016/j.
entcs.2005.12.014

6.	Chaudhary, S. (2017). Latest software testing tools and techniques: A review. International
Journal of Advanced Research in Computer Science and Software Engineering, 7(5), 538–540.
https://doi.org/10.23956/ijarcsse/sv7i5/0138

7.	Divyani, M., Taley, S., & Pathak, B. (n.d.). Comprehensive study of software testing techniques
and strategies: A review. [Online]. Available: www.ijert.org

8.	Garousi, V., & Mäntylä, M. V. (2016). A systematic literature review of literature reviews
in software testing. Information and Software Technology. Elsevier, 80, 195–216. https://doi.
org/10.1016/j.infsof.2016.09.002

9.	 Iqbal Malik, K., & Hassan, S. (2013). Software testing methodologies for finding errors soft-
ware architecture refactoring tools and techniques: a comparative study view project. [Online].
Available: www.theinternationaljournal.org

10.	Jamil, M. A., Arif, M., Abubakar, N. S. A., & Ahmad, A. (2017). Software testing techniques: A
literature review. In Proceedings – 6th international conference on information and communi-
cation technology for the Muslim world, ICT4M 2016 (pp. 177–182). https://doi.org/10.1109/
ICT4M.2016.40

11.	Jammalamadaka, K., & Parveen, N. (2019). Holistic research of software testing and chal-
lenges. International Journal of Innovative Technology and Exploring Engineering, 8(6
Special Issue 4), 1506–1521. https://doi.org/10.35940/ijitee.F1307.0486S419

12.	Jat, S., & Sharma, P. (2017). Analysis of different software testing techniques. International
Journal of Scientific Research in Research Paper. Computer Science and Engineering, 5(2),
77–80. [Online]. Available: www.isroset.org

13.	Jovanović, I. (n.d.) Software testing methods and techniques.
14.	Kaur Chauhan Ȧ, R., & Singh Ḃ Ȧ, I. (2004). Latest research and development on software

testing techniques and tools. [Online]. Available: http://inpressco.com/category/ijcet
15.	Kaur, M., & Singh, R. (2014). A review of software testing techniques. [Online]. Available:

http://www.irphouse.com.

K. Khan and S. Yadav

http://www.ijarcce.com
https://doi.org/10.1007/978-3-319-59647-1_27
https://doi.org/10.1007/978-3-319-59647-1_27
http://www.ijrcar.com
http://www.ijrcar.com
https://doi.org/10.1016/j.entcs.2005.12.014
https://doi.org/10.1016/j.entcs.2005.12.014
https://doi.org/10.23956/ijarcsse/sv7i5/0138
http://www.ijert.org
https://doi.org/10.1016/j.infsof.2016.09.002
https://doi.org/10.1016/j.infsof.2016.09.002
http://www.theinternationaljournal.org
https://doi.org/10.1109/ICT4M.2016.40
https://doi.org/10.1109/ICT4M.2016.40
https://doi.org/10.35940/ijitee.F1307.0486S419
http://www.isroset.org
http://inpressco.com/category/ijcet
http://www.irphouse.com

75

16.	Kumar, R. (2016). Software testing techniques and strategies. [Online]. Available: http://www.
ijeast.com

17.	Malviya, A. (n.d.) Software testing: Concepts and issues. [Online]. Available: https://ssrn.com/
abstract=3351067

18.	Naik, K., & Tripathy, P. (2011). Software testing and quality assurance: Theory and practice.
19.	Nidhra, S. (2012). Black Box and White Box testing techniques – A literature review.

International Journal of Embedded Systems and Applications, 2(2), 29–50. https://doi.
org/10.5121/ijesa.2012.2204

20.	Okezie, F., Odun-Ayo, I., & Bogle, S. (2019). A critical analysis of software testing tools.
Journal of Physics: Conference Series, 1378(4). https://doi.org/10.1088/17426596/137
8/4/042030

21.	Orso, A., & Rothermel, G. (2014). Software testing: A research travelogue (2000–2014).
In Future of software engineering, FOSE 2014 – Proceedings (pp. 117–132). https://doi.
org/10.1145/2593882.2593885

22.	Pardeshi, S. N. (2013). Study of testing strategies and availabletools. International Journal of
Scientific and Research Publications, 3(3) [Online]. Available: www.ijsrp.org

23.	Pezzè, M., & Young, M. (2008). Software testing and analysis: Process, principles, and tech-
niques. Wiley.

24.	Rosero, R. H., Gómez, O. S., & Rodríguez, G. (2016). 15 years of software regression test-
ing techniques – A survey. International Journal of Software Engineering and Knowledge
Engineering. World Scientific Publishing, 26(5), 675–689. https://doi.org/10.1142/
S0218194016300013

25.	Roshan, R., & Sharma, C. M. (2012). Review of search based techniques in software testing.
Rabins Porwal ITS.

26.	Sawant, A. A., Bari, P. H., & Chawan, P. M. (2015). Software testing techniques and strategies
(Vol. 2, pp. 980–986) [Online]. Available: www.ijera.com

27.	M. A. Sethi (n.d.), “A review paper on levels, types & techniques in software testing,”
International Journal of Advanced Research in Computer Science 8, 7, https://doi.org/10.26483/
ijarcs.v8i7.4236.

28.	Sharma, C., Sabharwal, S., Sibal, R., Hind, A., & Marg, F. (2013). A survey on software testing
techniques using genetic algorithm. [Online]. Available: www.IJCSI.org

29.	Singh Ghuman, S. (2014). International Journal of Computer Science and Mobile Computing
Software Testing Techniques. [Online]. Available: www.ijcsmc.com

30.	Singhal, A., Bansal, A., & Kumar, A. (2013). A critical review of various testing techniques
in aspectoriented software systems. ACM SIGSOFT Software Engineering Notes, 38(4), 1–9.
https://doi.org/10.1145/2492248.2492275

31.	 II. TESTING TYPES. (2013). [Online]. Available: http://www.toolsjournal.com/testinglists/
item/404-10-

32.	Vos, T. E. J., Marínt, B., Escalona, M. J., & Marchetto, A. (2012). A methodological frame-
work for evaluating software testing techniques and tools. In Proceedings – International con-
ference on quality software (pp. 230–239). https://doi.org/10.1109/QSIC.2012.16

A Literature Review on Software Testing Techniques

http://www.ijeast.com
http://www.ijeast.com
https://ssrn.com/abstract=3351067
https://ssrn.com/abstract=3351067
https://doi.org/10.5121/ijesa.2012.2204
https://doi.org/10.5121/ijesa.2012.2204
https://doi.org/10.1088/17426596/1378/4/042030
https://doi.org/10.1088/17426596/1378/4/042030
https://doi.org/10.1145/2593882.2593885
https://doi.org/10.1145/2593882.2593885
http://www.ijsrp.org
https://doi.org/10.1142/S0218194016300013
https://doi.org/10.1142/S0218194016300013
http://www.ijera.com
https://doi.org/10.26483/ijarcs.v8i7.4236
https://doi.org/10.26483/ijarcs.v8i7.4236
http://www.ijcsi.org
http://www.ijcsmc.com
https://doi.org/10.1145/2492248.2492275
http://www.toolsjournal.com/testinglists/item/404-10-
http://www.toolsjournal.com/testinglists/item/404-10-
https://doi.org/10.1109/QSIC.2012.16

77

A Systematic Literature Review
of Predicting Software Reliability Using
Machine Learning Techniques

Getachew Mekuria Habtemariam, Sudhir Kumar Mohapatra,
Hussien Worku Seid, and Deepti Bala Mishra

1 � Introduction

During the development process of software life cycle, it is almost difficult to avoid
the injection of fault in software development. So, it is essential to identify and
solve the faults even the failure as much as possible before delivering the software
to the end user [1]. The objective of software verification and validation is to iden-
tify errors and fix as much as possible. As more and more errors are discovered,
there is a need to be fixed through testing, and the number of errors found in the
software decreases, while on another side, it increases the software reliability. A
number of growth models of software reliability have been established in the previ-
ous to predict and estimate the reliability of software [2]. These models can also
help in determining at what time the testing process can stop and deliver the soft-
ware to the end user. The objective of this review is to identify and investigate the
different previously conducted research paper on software reliability prediction
using different machine learning techniques used to predict errors in the life cycle
of software development which is studied between 2010 and 2020. Our reviews
investigate how different machine learning techniques perform during software
development of early prediction of software fault. Our results enable researchers to
develop software reliability estimation and prediction via machine learning meth-
ods based on best experience and practice across many previous studies. In addition

G. M. Habtemariam · H. W. Seid
Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
e-mail: hussien.seid@aastu.edu.et

S. K. Mohapatra (*)
Faculty of Emerging Technologies, Sri Sri University, Cuttack, Odisha, India
e-mail: sudhir.mohapatra@srisriuniversity.edu.in

D. B. Mishra
Department of MCA, GITA Autonomous College, Bhubaneswar, India

© Springer Nature Switzerland AG 2022
M. Khari et al. (eds.), Optimization of Automated Software Testing Using
Meta-Heuristic Techniques, EAI/Springer Innovations in Communication and
Computing, https://doi.org/10.1007/978-3-031-07297-0_6

mailto:hussien.seid@aastu.edu.et
mailto:sudhir.mohapatra@srisriuniversity.edu.in
https://doi.org/10.1007/978-3-031-07297-0_6

78

to this, our review output also helps reader to make efficient decisions on software
estimation and prediction most suited to their context [3, 4].

The emergence of a huge number of software reliability growth models alone is
a manifestation that there is no specific model appropriate for predicting the reli-
ability of all types of software. Therefore, in the future one of the research areas that
can be establish a specific model appropriate for all kinds of state of affairs or estab-
lishment of a joined up or universal model which can acquire forms appropriate for
diverse types of the software.

Another significant research area can be detecting the best-tailored model for a
given scenario. Several investigation standards have been proposed for stating the
best-tailored model. Several times, the different measurement may propose differ-
ent models as the best-tailored model for a given scenario. Therefore, the establish-
ment of a procedure to state the best model tailored for a given scenario based on
several measurements can be additional area of upcoming research.

Guarantee of software reliability is an essential issue in the establishment of
software applications. Software reliability is among the vital component of software
quality which affects the quality of the software [2]. In a broad sense, software qual-
ity consists of many features, such as software functionality, availability, maintain-
ability, robustness, performance safety, etc. [1, 5]. Software reliability considers
into account all kinds of errors and defect that may cause a tough risk in any types
of software programs. To evaluate and forecast the software reliability with appro-
priate accuracy is a difficult task.

The organization of the remaining part of the review is as follows: Sect. 2 shows
the procedure as well as the research questions which are handled in this review and
followed by the research criteria for choice of primary studies. Section 3 portrayed
the boundary and the restriction of the review work that exhibits the responses to the
research questions which are stated in this work. Section 4 states the result or out-
come. Finally, the conclusion and some future directions are drawn in Sect. 5.

2 � Methodology for the Review

The overall activities of organizing, directing, and broadcasting of the systematic
review conducted in this review research are carried out by following the standard
furnished by Kitchenham [1]. For a simple understanding, the step of systematic
literature review is illustrated in Fig. 1. In the initial step, we established the review
guideline which enclosed the following line of actions: finding out research ques-
tions, plan search schemes, analysis selection procedures, investigate quality assess-
ment, data pulling out operation, and data integration procedure. Following the
establishment of the review standard, a series of processes was conducted in the
review. In the initial stage, we established the research questions which managed
the problems to be answered in the literature review. In the next stage, we portrayed
the search scheme which incorporates the pinpointing of search terms and choice of
sources to be found in order to identify the key studies.

G. M. Habtemariam et al.

79

Identify research questuion

Design search schemes

resourcesLook for terms

Search procedures

Selection evaluation

Inspection

Quality assessment

Data integration.

Fig. 1  Review protocol
steps

Selection stage 1

Selection
stage 2

Search stage 1

IEEE Eplore

Total = 250papers

170 relevant papers

150 Relevant References

References

60 selected

ACM

ScienceDirect

onlinelibrary.wiley.com

Springer

IGI Global

BEIESP

Hindawi

Web of Science

Search stage 2

Fig. 2  Search and selection process

Following the next step is the designation of appropriate analysis based on the
research questions. This stage also controls the inclusion and exclusion guideline
for each primary study. After following the next step, we state quality assessment
scheme by creating the quality assessment surveying in order to examine and evalu-
ate the studies. The final step engages the design of data pulling out forms to collect
the essential information with the aim of responding to the research questions, and

A Systematic Literature Review of Predicting Software Reliability Using Machine…

80

in the final step, we plan procedures for data integration, which are portrayed in
Figs. 1 and 2.

Establishment of review guideline is an essential step in a systematic literature
review as it depletes the likelihood and threat of research unfairness in the system-
atic literature review. We developed the review scheme in this task by repeatedly
holding dialogues and consultation with our adviser which involve a senior associ-
ate and assistant professors. In the subsequent sections, we specify the research
questions and the steps followed while developing the systematic literature review.

2.1 � Research Questions

The purpose of this systematic literature review is to deliver and evaluate the fact-
finding evidence acquired from the studies of software reliability using machine
learning approach in the literature. Table 1 portrayed 12 research questions handled
in this literature review. From the key studies we found the basic ideas and defini-
tion of software reliability used for predicting software reliability (RQ1). We inves-
tigated these studies using the machine learning approach for software reliability
prediction to respond to RQ2, RQ3, RQ4, RQ5, RQ6, RQ7, and RQ8. In the subse-
quent research question, we investigated the overall efficiency of the machine learn-
ing approach for software reliability prediction (RQ9). This question concentrates
on the values of the efficiency measures for software reliability prediction. RQ10
analogizes the efficiency of machine learning approach and analytical methods on
the software reliability prediction. The objective of this question is to decide if
machine learning approach is ahead of the analytical methods. RQ11 evaluates the
cross-validation techniques as well as which machine learning approach outshined
the other machine learning approach in order to decide which machine learning
approach is persuasively ahead of the other machine learning approach. The last
question (RQ12) decides the effectiveness and shortcoming to bring software pro-
fessional direction concerning the choice of the appropriate machine learning
categories.

2.2 � Search Scheme and Selection Analysis

We established a complicated look for keywords by integrating different terms and
synonyms applying Boolean statement “OR” and coupling with the vital look for
terms applying “AND.” The subsequent common look for terms was applied for
distinguishing of main studies:

Software AND (Reliability prediction OR Fault prediction OR defect prediction OR
error prediction OR failure prediction) AND (machine learning OR soft
computing).

G. M. Habtemariam et al.

81

Table 1  Research question

RQ# Identified RQ (research questions) Rationalization

RQ1 What are the basic ideas and definition of
software reliability?

Assess the different basic ideas and
definitions of software reliability discuss
by different author.

RQ2 What type of experimental verification
used for predicting software reliability?

Explore the different experimental
verification which is discussed by different
author.

RQ3 Which type of metrics is frequently used
for predicting software reliability?

Identify which metrics are commonly used
for software reliability prediction.

RQ4 What software reliability data sets are used
for build software reliability model?

Assess and evaluate data sets to be
appropriate for users to build software
reliability prediction model.

RQ5 What are the assessment criteria available
to measure the efficiency of software
reliability prediction?

Review the evaluation criteria frequently
used in each software reliability prediction.

RQ6 Which prediction mode is the best
achieving used for software reliability
prediction?

Explore the best achieving prediction
models in each investigation of the
previously conducted research.

RQ7 Which collaborative prediction models are
used to predict software reliability?

Examine the collaborative prediction
models frequently used for in software
reliability.

RQ8 What type of efficiency measurement is
used for software reliability prediction?

Explore the type of efficiency measurement
used for software reliability prediction.

RQ9 What is the overall effectiveness of the
machine language for software reliability
prediction?

Investigating the overall effectiveness of
the machine learning approach for software
reliability prediction.

RQ10 Which technique outshines performance of
the machine learning and statiscal methods
on software reliability prediction?

Explore the performance of the machine
learning technique and stastical techniques
on software reliability prediction.

RQ11. What method of cross-validation is used to
assess the efficiency of software reliability
prediction models?

Examine the various validation methods
applied on software reliability prediction
models.

RQ12 Which category of machine learning
technique is the best suitable for software
reliability prediction?

Explore the different types of machine
learning techniques best suitable for
software reliability prediction.

Later distinguishing the search terms necessary and significant digital repository
were selected. The choice was not limited by the accessibility of digital portals at
the home academies. The subsequent nine electronic databases were used for
searching the main studies

	1.	 IEEE Xplore.
	2.	 ACM.
	3.	 Science Direct.
	4.	 Wiley Online Library.
	5.	 Springer.
	6.	 IGI Global
	7.	 Blue eye intelligent engineering and science publication.

A Systematic Literature Review of Predicting Software Reliability Using Machine…

82

	8.	 Hindawi.
	9.	 Web of Science.

The search was made from the above nine digital repositories by applying
selected search query. We restricted the search from 2010 to 2020 as the systematic
literature review of predicting software reliability using machine learning approach
was conducted in 2009. After determining which electronic databases to search, an
initial search to identify the candidate primary studies was performed. Next to con-
ducting an initial search, the significant studies were decided by acquiring full text
papers succeeding the inclusion and exclusion guideline portrayed in the following
section. We also incorporate those studies that were found invaluable from the bib-
liography section of the important studies.

We incorporated the experimental studies of software reliability prediction using
the machine learning techniques in the systematic literature review. We also state
250 main studies for inclusion in the systematic literature review. The candidate
primary studies were chosen following the inclusion and exclusion criteria which
are given below:

Inclusion Criteria

	 (i)	 Experimental studies of software reliability prediction using the machine
learning techniques.

	(ii)	 Experimental studies coupling the machine language and non-machine lan-
guage techniques for software reliability prediction.

	(iii)	 Empirical studies comparing the ML and statistical techniques for software
reliability prediction.

	(iv)	 For duplicate publications of the same study, only the latest version will be
included.

	(v)	 Using hybrid model that employs more than or a least two machine language
techniques.

Exclusion Criteria

	 (i)	 Evaluate without experimental analysis of software reliability prediction of
using of the ML techniques.

	(ii)	 Analysis developed on dependent variables other than fault susceptibility.
	(iii)	 Evaluate applying the machine language techniques in situation other than

software reliability prediction.
	(iv)	 Identical investigation, which is the investigation done by the same author in

conference and extended version in journal. But if the output were dissimilar
in both investigation, they were included.

	(v)	 Software reliability estimation evaluations.

The above guideline of inclusion and exclusion was evaluated by two advisers indi-
vidualistically, and they arrived a joint decision after detailed discussion. In case of
any confusion, full text of the evaluation was inspected, and the last determination
concerning the inclusion/exclusion was established. Besides, the quality of the

G. M. Habtemariam et al.

83

investigation was decided by their significance to the research questions. The identi-
cal investigation with the same output by an individual author was removed. By
using the above selection guideline, 250 articles were chosen as choice. Lastly, the
quality evaluation guideline given in the subsequent section was used to acquire the
last investigation.

2.3 � Quality Evaluation Criteria

The quality evaluation guidelines are executed to assess each investigation devel-
oped on the stated research question in the literature review. The quality evaluation
guideline follows the stated quality specification as identified by [6]. The primary
motto of the quality evaluation guideline is to select investigation and evaluate the
investigation which is used to answer our research questions and to assist more
detailed studies of inclusion and exclusion guideline. We formed a quality survey
for evaluating the importance and effectiveness of the main studies. The quality
evaluation is used for weighing the investigation. The quality evaluation queries are
stated below.

	 1.	 What does the objective of the research clearly state?
	 2.	 Is the main research problem defined?
	 3.	 Are software reliability and machine learning defined?
	 4.	 Is the type of software reliability measurement defined?
	 5.	 What does the research methodology clearly specify and is it repeatable?
	 6.	 Is the source of the datasets specified?
	 7.	 Is a suitable tool for the extraction of the datasets clearly mention?
	 8.	 Is the size of the dataset suitable?
	 9.	 Is the data collection procedure clear and unambiguous?
	10.	 Does the study ascertain the type of programing language used in the systems

being analyzed?
	11.	 Are the independent and dependent variables clearly identified?
	12.	 Is the dataset published publicly?
	13.	 Are appropriate evaluation measures used?
	14.	 Are suitable cross validation techniques used?
	15.	 Are the prediction techniques justified?
	16.	 Are the prediction models and performance of the models properly identified?
	17.	 Are the results and findings clearly discussed?
	18.	 Are the research limitations or challenges properly identified?
	19.	 Does it contribute or add value to the existing literature?

The grading process of the quality evaluate questions is developed based on 1 for
yes, 0.5 for partly, and 0 for No. The grade rank of the study groups is as follows:
14 ≤ score ≤ 15 for excellent, 10 ≤ score ≤ 13 for good, 5 ≤ score ≤ 8 fair, and

A Systematic Literature Review of Predicting Software Reliability Using Machine…

84

0 ≤ score ≤ 5 for fail [7, 8]. From using the above quality evaluate criteria, 250
papers fail in our quality evaluation. At the end, 60 main paper were selected to
conduct for our systematic literature review.

2.4 � Data Extraction

The objective of using data pull out is to decide which research question was
answered by which main study. During data extraction the researcher performs to
pull out extract data from each selected main study with the purpose of collecting
data which is used to respond research question. Table 2 classify the categories with
regard to our research question necessities.

2.5 � Data Synthesis

The aim of data synthesis is to collect and syndicate data from the selected main
investigation in order create and reply to respond the research questions. Gathering
a number of primary investigations which identify identical and equivalent ideas
and output supports in supplying research evidence for acquiring conclusive
response to the research questions. This review examined and assessed each of the
quantitative data and qualitative data which forms a body of fact from the selected
investigations that handle the problems corresponding to our research question [7–
9]. Quantitative data includes values of various performance metrics and qualitative
data which incorporate the effectiveness and limitation of the machine learning pro-
cedures and categorization of various machine learning procedures. With the aim of
responding to our research questions, we applied visualization approaches.

Table 2  Data pull out category corresponding with research query

Category Research question

Over all ideas and definition of software reliability RQ1
Experimental verification of software reliability using machine learning
technique

RQ2

Software reliability metrics RQ3, RQ4, RQ5
Software reliability data set and size RQ6, RQ7
Performance evaluation of software reliability prediction model and
ensemble model

RQ8, RQ9,

Overall performance machine RQ10, RQ11,
RQ12.

G. M. Habtemariam et al.

85

3 � Discussion on Some Selected Article

Jaiswal et al. [2] stated and defined software reliability, that is, “The capability of
the computer program to achieve its end user requirement operation under identified
situation for a quantified period of time.” As human need increaser to use software,
parallel with the fast progression and rising sophistication of the software. So,
developing quality software is tough to acquire.

The researcher applied machine learning techniques for predicting and forecast-
ing software reliability. But as need, complexity, and size as well as dynamic nature
of software increases, it is difficult to achieve and produce reliable and consistence
software for end user. In addition to this, the researcher suggests conducting further
research on a software which has a large dataset by applying various other compu-
tational intelligent techniques for software fault predictions. Again, the researcher
suggests to design and develop a model which integrates with other computational
intelligent techniques in order to establish estimation models that cable to estimate
the reliability of software more consistency with least precision errors and cost.

Kumar et al. [3] used various machine learning approaches such as artificial neu-
ral network (ANN) which include backpropagation neural network (BPNN), radial
Basis function network (RBFN), Elman network, support vector machines (SVM),
cascade correlation neural networks (CCNN), decision tree (DTs), and fuzzy infer-
ence system (FIS) for the prediction of quality and error-free software developed on
past history failures of software outputs, and SVM model depicted a better result
while comparing the model applying ANNs, CCNN, DTs, and FIS in total datasets
[10–12].

The researcher concluded that in order to make reliable software, the researcher
should have large dataset and experimental investigation which are capable of vali-
dating the system by survey and experiment which are required in future research.
Therefore, current research of software reliability forecasting applying computa-
tional intelligent learning approaches offers the direction for upcoming research in
the area of software engineering in order to evaluate the influence of past and pres-
ent failure of data for genuine software reliability prediction. Further they suggest
for the new researcher, identical types of finding need to be established with large
dataset and real-life scenario in various data sets to provide a comprehensive result
across various institutions and make cost benefit analysis in order to determine soft-
ware reliability prediction technique would be economically feasible in a real
environment.

Pai et al. [8] propose support vector machine technique combined with genetic
algorithms for predicting software reliability. Support vector machine is used for
investigating a problem of nonlinear regression and time series which indicated that
the behavior of software reliability prediction depends on time. Software reliability
prediction commonly changes with time. These changes can be handled as a time
series process. Predicting the variability of software reliability with time is chal-
lenging one. Finally, they suggest for the researcher that additional research should

A Systematic Literature Review of Predicting Software Reliability Using Machine…

86

apply more efficient optimization algorithms to select the parameters of the support
vector machine technique to forecast software reliability.

Karunanithi N. et al. [13] made an investigation of detailed study to exhibit the
use of connectionist models or neural network model, which is applying in the soft-
ware reliability prediction model. The approach of the researcher tries to identify
several network models, training rules, and data representation methods. The
researchers suggest that the connectionist models may adapt well across different
data sets and show a better predictive accuracy, but various models have different
analytical efficiency at various stages of software testing, and there is no common
parametric model which can show accurate predictions in all software develop-
ments. Therefore, additional research should be conducted which considers all soft-
ware development characteristic.

Cai et al. [14] proposed a fuzzy-based software reliability prediction models
rather than probabilistic model. The authors claim that software reliability models
are fuzzy in nature. Ho et al. mainly study intensively on connectionist models and
their applicability to software reliability prediction. The findings of the researcher
are that connectionist models are better as compared to traditional software reliabil-
ity models.

Lou et al. [15] propose and discuss about the relevance of vector machine used
for software reliability prediction. Yang et al. develop a hybrid model. The model
uses data mining techniques and genetic algorithms for software reliability predic-
tion. Authors have identified the utilization and applicability of auto-regressive inte-
grated moving average technique and SVM for reliability prediction. Kumar et al.
[3] propose the use of correlation neural networks, decision trees, and fuzzy infer-
ence system in their machine learning model to predict the reliability of software
products.

Torrado et al. [16] focused on software failures over time. For this, the researcher
used ML techniques like the Bayesian model alongside Gaussian processes. The
proposed model uses a suitable multistep prediction approach. The model is used to
predict long-term software failures.

Kulamala et al. [17] use numerical intelligence for software reliability predic-
tion. They mentioned that for software reliability prediction, model development is
very challenging. It is because of the dynamic and uncertain nature of the software.
They conclude that software reliability prediction is an open problem and needs
more research on it.

Ma et al. [18] use support vector regression for software reliability. The researcher
gives a mathematical method to select the kernel function. Researcher uses root
mean square error, mean absolute error, relative square root error, and relative abso-
lute error results with reliability index parameters of the software for a correlation
analysis.

Jabeen et al. [19] use a precision error iterative analysis method for predicting
software reliability prediction. They compared their model with genetic algorithm.
The output is measured using goodness-of-fit and predictive performance. They
conclude that their model is versatile and universal in improving the performance of

G. M. Habtemariam et al.

87

various software reliability growth models. Limitation of their research is not con-
ducting large-scale comparison.

Tejaswini et al. [20] used machine learning approaches for software fault predic-
tion. The paper lacks clarity about the research and how they carried out it. The
researcher emphasizes on selecting a suitable software reliability growth, and pre-
diction model in the software development is challenging for the developers. The
idea is clear and accurate with regard to reliability measurement in software devel-
opment life cycle.

Behera et al. [21] use chemical reaction optimization-based hybrid model for
software reliability prediction. They further proposed that for improving accuracy
of software reliability prediction, evolutionary techniques and higher-order neural
network should be used.

Banga et al. [22] proposed a framework for software reliability prediction [36].
Software Failure and Reliability Assessment Tool (SFRAT) is proposed by Nagaraju
et al. This tool having various software reliability growth models is made public as
open-source tool.

Saraf et al. [23] proposed a model that is derived from a nonhomogeneous
Poisson process (NHPP) based on a unified scheme for multi-release two stage fault
detection or observation and correction or removal software reliability models.

4 � Results

This portion states the outputs acquired from selected main investigation and incor-
porates specifics about the search outputs, a visualization of journal years and
sources, and subsequent from this an outline of the quality evaluation output.

4.1 � Explanation of Primary Studies

In this portion, we deliver a brief explanation of the selected main studies. We have
selected 60 key studies, out of 250 studies which are developed on the quality que-
ries, on prediction of software reliability using machine learning techniques. Most
of the studies were extracted from open-source data sets.

4.1.1 � Year of Publications and Source

When the researcher performs a systematic literature review analysis, the type of
publication source and its publication year are the most important. In this systematic
literature review, the publication years of selected primary studies lie between the
year 2010 and 2020, and the following figure shows the numbers of studies

A Systematic Literature Review of Predicting Software Reliability Using Machine…

88

22%

78%

Journals Conferences

Fig. 3  Distribution of
publication type

18

16

14

12

10

8

6

4

2

0
2020 2019 2018 2017 2016 2015

Year of Publication

N
um

be
r

of
 S

tu
di

es

2014 2013 2012 2011 2010

Fig. 4  Number of selected studies over the years

0 5

USEA
UCSI

UCST
IJACSA

P
ub

lis
he

r

Elsevier
Blue eye intelligent...

Hindawi
IMechE

Asian Research Publishing...

MECS
UESRT

Number of paper published

10 15

Series1

Fig. 5  The number of studies in each journal

G. M. Habtemariam et al.

89

published during these years. The major source of publications which is extracted
from IEEE is as follows:

	1.	 IEEE Xplore, ACM, Science Direct, Wiley Online Library, Springer, and so on.
The sources of the publication come from two sources which is 78% of the stud-
ies come from journals and 22% of the studies come from conferences (Figs. 3,
4 and 5).

5 � Conclusion

The review of this chapter will help the researchers to assess and evaluate available
study done on software reliability prediction and particularly using machine learn-
ing. This review will give a clear picture of what the researcher has done on param-
eters, datasets, objective, methods, performance evaluation metrics, and experimental
result perspectives. For conducting this review, we identified 60 primary studies
which are relevant to the objective of our review literature. This study result shows
that this topic is an open topic with many works needed to be done in terms of size
of the software, language use in the software, and reliability models used for predic-
tion. Soft computing and machine learning techniques are used, but the possibility
of using more ML models needs to be explored.

References

1.	Kitchenham, B., et al. (2009). Systematic literature reviews in software engineering – A sys-
tematic literature review. Information and Software Technology, 51(1), 7–15.

2.	 Jaiswal, A., & Malhotra, R. (2018). Software reliability prediction using machine learning
techniques. International Journal of System Assurance Engineering and Management, 9(1),
230–244.

3.	Kumar, P., & Singh, Y. (2012). An empirical study of software reliability prediction using
machine learning techniques. International Journal of System Assurance Engineering and
Management, 3(3), 194–208.

4.	Srinivasan, K., & Fisher, D. (1995). Machine learning approaches to estimating software
development effort. IEEE Transactions on Software Engineering, 21(2), 126–137.

5.	Ali, A., Jawawi, D. N., Isa, M. A., & Babar, M. I. (2016). Technique for early reliability predic-
tion of software components using behaviour models. PLoS One, 11(9).

6.	Latha, D. H., & Premchand, P. (2018). Predicting software reliability using Ant Colony opti-
mization technique with travelling salesman problem for software process-a literature survey.
International Journal on Recent and Innovation Trends in Computing and Communication,
6(4), 106–112.

7.	Aleem, S., Capretz, L. F., & Ahmed, F. (2015). Benchmarking machine learning technologies
for software defect detection. arXiv preprint arXiv:1506.07563.

8.	Pai, P. F. (2006). System reliability forecasting by support vector machines with genetic algo-
rithms. Mathematical and Computer Modelling, 43(3–4), 262–274.

A Systematic Literature Review of Predicting Software Reliability Using Machine…

90

9.	Ramasamy, S., & Lakshmanan, I. (2017). Machine learning approach for software reli-
ability growth modeling with infinite testing effort function. Mathematical Problems in
Engineering, 2017.

10.	Martens, A., Koziolek, H., Becker, S., & Reussner, R. (2010, January). Automatically improve
software architecture models for performance, reliability, and cost using evolutionary algo-
rithms. In Proceedings of the first joint WOSP/SIPEW international conference on perfor-
mance engineering (pp. 105–116). ACM.

11.	Aljahdali, S. H., & El-Telbany, M. E. (2009, May). Software reliability prediction using multi-
objective genetic algorithm. In IEEE/ACS International Conference on Computer Systems and
Applications, 2009 (AICCSA 2009). (pp. 293–300). IEEE.

12.	Pati, J., & Shukla, K. K. (2015, February). A hybrid technique for software reliability predic-
tion. In Proceedings of the 8th India software engineering conference (pp. 139–146). ACM.

13.	Karunanithi, N., Whitley, D., & Malaiya, Y. (1992). Prediction of software reliability using
connectionist models. IEEE Transactions on Software Engineering, 18(7), 563–574.

14.	Cai, Y. K., Wen, Y. C., & Zhang, L. M. (1991). A critical review on software reliability model-
ing. Reliability Engineering and System Safety, 32(3), 357–371.

15.	Lou, J., Jiang, Y., Shen, Q., Shen, Z., Wang, Z., & Wang, R. (2016). Software reliability predic-
tion via relevance vector regression. Neurocomputing, 186, 66–73.

16.	Torrado, N., Wiper, M. P., & Lillo, R. E. (2013). Software reliability modeling with soft-
ware metrics data via gaussian processes. IEEE Transactions on Software Engineering, 39(8),
1179–1186.

17.	Kulamala, V. K., Maru, A., Singla, Y., & Mohapatra, D. P. (2018, December). Predicting soft-
ware reliability using computational intelligence techniques: A review. In 2018 international
conference on information technology (ICIT) (pp. 114–119). IEEE.

18.	Ma, Z. Y., Zhang, W., Wang, J. P., Liu, F. S., Han, K., & Gao, F. (2018, December). Research
on a method of software reliability prediction model. In Proceedings of the 2018 2nd interna-
tional conference on computer science and artificial intelligence (pp. 163–167). ACM.

19.	Jabeen, G., Luo, P., & Afzal, W. (2019). An improved software reliability prediction model
by using high precision error iterative analysis method. Software Testing, Verification and
Reliability, e1710.

20.	Tejaswini, P., Varsha, K., Yasaswini, P., & Yalamanchili, S. (2019, September). Software
defect prediction using machine learning. International Journal of Recent Technology and
Engineering (IJRTE), 8(2), S11. ISSN: 2277-3878.

21.	Behera, A. K., Nayak, S. C., Dash, C. S. K., Dehuri, S., & Panda, M. (2019). Improving soft-
ware reliability prediction accuracy using CRO-based FLANN. In Innovations in computer
science and engineering (pp. 213–220). Springer.

22.	Banga, M., Bansal, A., & Singh, A. (2019, April). Implementation of machine learning tech-
niques in software reliability: A framework. In 2019 International Conference on Automation,
Computational and Technology Management (ICACTM) (pp. 241–245). IEEE.

23.	Saraf, I., & Iqbal, J. (2019). Generalized multi release modelling of software reliability growth
models from the perspective of two types of imperfect debugging and change point. Quality
and Reliability Engineering International.

G. M. Habtemariam et al.

91

Evolutionary Algorithms for Path
Coverage Test Data Generation
and Optimization: A Review

Dharashree Rath, Swarnalipsa Parida, Deepti Bala Mishra,
and Sonali Pradhan

1 � Introduction

Software testing is a process to analyze whether the performed results match with
the expected results or not and to produce catastrophic bugs-free software module
[1]. Nowadays, almost in every sector, the role of software is very crucial, and the
requirement of software technology plays a vital role in our society. Though soft-
ware becomes intricate, the demand of good software is rising in the size, and
emphasis is given on the quality of software product [2]. So, software testing is
mandatory to find a quality software, and it is an important phase in every Software
Development Life Cycle (SDLC) shown in Fig. 1. To increase the quality of a
software product, software testing is used, and this is considered as a vital role in
software development phase [3]. In software development, software testing is
considered as a costly and time-consuming process. Also, it helps to improve the
confidence of the consumer. The reason of software testing is to develop a reli-
able, trustworthy, and robust software product [4]. To perform testing operation
the software modules are divided into some small and isolated parts which are
referred as test cases. Then the test cases provide some input data values to the test
system to analyze the errors [5]. Every year, software company recompenses an
enormous loss of about $500 billion per year due to reduction in software product
quality, and the reason of software failure is the negligence of software company,
and to eradicate the failure, software testing is taken, and they get some positive
results [6, 7].

D. Rath · S. Parida · D. B. Mishra (*)
GITA Autonomous College, Bhubaneswar, India

S. Pradhan
C. V. Raman Global University, Bhubaneswar, India

© Springer Nature Switzerland AG 2022
M. Khari et al. (eds.), Optimization of Automated Software Testing Using
Meta-Heuristic Techniques, EAI/Springer Innovations in Communication and
Computing, https://doi.org/10.1007/978-3-031-07297-0_7

https://doi.org/10.1007/978-3-031-07297-0_7

92

Fig. 1  Phases of SDLC

Software testing is classified as random-based software testing and search-based
software testing [8]:

•	 RBST.
•	 SBST.

For test data generation, RBST is considered the simplest technique, that is, here the
random inputs are given as input data for execution, and then it examines the results
that whether these are satisfied or not, but the constraint satisfying probability is low
for the programs which are already tested. But the main drawback of RBST is that
in some cases the test data does not match with the target test data, and this situation
is known as critical data [9].

The SBST technique is considered the most popular technique as many software
industries are using it for solving the optimization problem and search-based testing
problems by using some heuristic algorithm. There is some metaheuristic algo-
rithm, namely, genetic algorithm (GA), particle swarm optimization (PSO), artifi-
cial bee colony optimization (ABCO), ant colony optimization (ACO), etc. [10].

The next part of this chapter is organized as follows: Section 2 describes the
basic concept of testing and the working principles of some testing techniques.
Section 3 represents the review parts as we took some papers and review their works
and experiments on different evolutionary algorithms using in the testing tech-
niques. Lastly, Section 4 describes the conclusion part of our review and some
observation from our systematic literature studies.

2 � Basic Concepts

Here a brief description about the basic concept of some testing approaches of those
which are used in our work is described.

D. Rath et al.

93

2.1 � Testing Levels

Generally, a software testing goes under some sub-testing techniques [11–13],
that is:

•	 Unit testing.
•	 Integration testing.
•	 System testing.
•	 Acceptance testing.
•	 Regression testing.

2.1.1 � Unit Testing

Unit testing is considered as small testing of some modules or some parts of any
given software project. After a software is designed and coded, unit testing takes
place. Here the unit test cases are introduced and ready to design and then tested.
The module is divided into two parts, that is, stub and driver. The stub is considered
as a dummy and simplified procedure that is similar to the given I/O parameters.

In unit testing, stubs are referred to as “called program” function which is used
in top-down approach, and after the completion of the top level, the lowest level
is tested.

And drivers are referred to “called program” function which is used in bottom-up
approach, and after the completion of bottom level, top level is tested.

2.1.2 � Integration Testing

After completion of unit testing, it combined as a group and tested logically that
means data flow between the dependent module is tested here. In integration testing,
the integrated modules are combined and tested whether some faults detect after
combination of modules.

Different types of integration testing are introduced, namely, Big Bang
integration, top-down integration, bottom-up integration, mixed integration, etc.

2.1.3 � System Testing

The complete system is evaluated and tested when all modules are combined.
The main aim of this testing is to satisfy the user requirement and specification

of the system. System testing is used to check the errors from the integrated mod-
ules and whole system.

Evolutionary Algorithms for Path Coverage Test Data Generation and Optimization…

94

There are various testing techniques used like performance, load, stress, and
scalability. Basically, system testing comes under some types that are listed as
follows:

	(a)	 Set the testing environment.
	(b)	 Generate test cases.
	(c)	 Test data generation.
	(d)	 Execution of test cases.
	(e)	 Reporting of defects.

2.1.4 � Acceptance Testing

In acceptance testing acceptability of system is tested to check that it fulfils the
business requirement of customer or not. The main goal of this testing is to check
whether the software products are ready to deliver or not.

There are two types of testing, namely, alpha testing and beta testing:

•	 Alpha testing: Performed at developer side.
•	 Beta testing: Performed at customer side.

2.1.5 � Regression Testing

Regression testing is determined to check the changes in new functionality, but it
does not affect the old functionality and also confirms that the previous functional-
ity works perfectly with the new functionality.

When it comes to the maintenance of software, bug fix may be needed, and the
work of regression testing is to check that the newly added feature has been no
inauspicious effect on the existing working software.

If a modified software module fails or when a new module is used with previous
unchanged module and causes error in unchanged module by creating complication,
then the system under test (SUT) is said to regress.

2.2 � Black Box Testing

In black box testing, the functionality of software specification is examined, and the
tester is not aware of the internal and structural design of the software product [14].

This testing mainly emphasizes on both the function and behavior of software.
The tester can perform specification using the following techniques:

•	 Boundary value analysis.
•	 Equivalence partitioning.
•	 Graph based.

D. Rath et al.

95

•	 Transition state.
•	 Decision table.
•	 Similarity testing.

2.3 � White Box Testing

In white box testing, the main focus is on structural and internal design. As tester is
known about the code, so it is known as clear boxing [15]. When testers are testing
a program using white box testing, it should be followed by two basic steps, namely:

	(a)	 Understand the Source Code: At the beginning of testing, tester should learn
and understand the program code and then use white box testing for internal
and structural design. The tester is highly responsible for issue and also checks
the prevention from the hackers and attackers.

	(b)	 Create Test Cases and Execute: In this case, the tester should create test cases
for each program and then execute the program step by step.

2.3.1 � Fault-Based Testing

To eradicate the specific category of failure, fault-based testing is used such as
mutation testing.

2.3.2 � Coverage-Based Testing

Here, testing is done on the basis of certain criteria, and requirement of this testing
is to choose the test cases which are equivalent to the criteria and different coverage
factor, namely, path coverage, condition coverage, branch coverage, statement cov-
erage, etc. that are described as follows [15]:

	(a)	 Statement Coverage: In this testing procedure, the application which comes
under test is tested at least once, and when the procedure will start, we should
check the probable error in the application.

The main drawback of this technique is that the statements are always
checked once and decided that it functions properly.

	(b)	 Branch Coverage: In this testing, test cases are designed to create branch
condition in the program and all and also presume that it is true or false. It is
stronger than statement-based testing.

	(c)	 Condition Coverage: Here, test cases are designed on the basis to make a
composite conditional statement and assume that it is true or not and then
execute all the expression and conclude the outcomes.

	(d)	 Path Coverage: In this testing, test cases are designed in the manner that all
linearly independent paths are executed at least once.

Evolutionary Algorithms for Path Coverage Test Data Generation and Optimization…

96

2.4 � Path Testing

Path testing is a structural testing technique that was introduced by How den in
1976, designed in such a way that all selected paths are executed through a com-
puter program. Here a set of test data traversed all the logical paths and executed for
accurate results and branch coverage. So, it is considered as a secure coverage tech-
nique than other testing process [16].

It uses two sub-steps, that is, test data generation and target path generation for
covering the target path. In this technique, all linearly independent executable paths
are covered to find all the underlying faults inside every piece of code, and some
cyclomatic complexity methods are used to determine that linearly independent
executable paths. The cyclomatic complexity (CC) was designed by McCabe, and it
provides linear independent path and the upper bound value [12, 16]. The cyclo-
matic complexity of a program can be represented by Eq. (1).

	
V G E N� � � � � 2

	
(1)

where E is the total number of Edges, N is the number of nodes present in the
graph G.

2.4.1 � Critical Path

In critical path testing, no test data is generated, and it takes time to search the test
data. For generating a test suite which is optimized and creates challenges for oth-
ers, that means for future, it is considered as a meaningless searching process [15–
17]. There are different heuristic methods like GA, ACO, PSO, and ABC that are
used to generate test data accompanying with critical path.

2.4.2 � Control Flow Graph

Control flow graph is used to determine the logical path. Here the flow sequence of
programs is represented by nodes and edges [15, 18]. Nodes are used to generate
decision, and edges are used to control the statement, and edges are used to control
the statement. Different approaches are used to determine linearly independent
paths with the help of path testing. For all possible paths, test cases are executed and
determined with 100% results of statement and branch coverage [18].

Hence, from Fig. 2, the linearly independent paths are as follows:

1→6
1→2→3→5→6
1→2→4→5→6

D. Rath et al.

97

Program to find the GCD of two numbers [3]

int GCD (int a, int b)

1. while (a! =b)

2. { if(a>b) then

3. a=a-b;

4. else b=b-a;

5. }

6. return a;

1

2

3 4

5

6

Fig. 2  CFG for GCD program

For generation test data from multiple paths, path testing can be formulated as an
optimization problem which is explained in equation [19].

Problem  Let S is the SUT.

Here “I” is the input domain.
p = {p1, p2, p3, p4, …} is its target path set for 100% path coverage.
We need to find a set of test data X = {x1, x2, x3, x4, …} where xi ∈ I and f(x) is a

function which can be mapped toxi to cover a path pi in S, defined in Eq. (2):

	
f x

p x

p
i

i

� � � � �
	

(2)

So, x is desired test data for traversing path pi if f(x) = 1.

3 � Related Work

In this section, we discuss some related state-of-the-art works on the frequent use of
EAs for optimizing the test data for path coverage-based testing to find the efficient
path. The works are briefly described as follows.

Evolutionary Algorithms for Path Coverage Test Data Generation and Optimization…

98

3.1 � Test Case Generation and Optimization Using GA

Mansour et al. [12] proposed two algorithms, namely, simulated algorithm (SA)
and genetic algorithm (GA) to generate the test cases which execute the selected
paths of a program. These two algorithms include integer value and real value test
cases. And the outcome shows that these two algorithms give faster results than
Kore’s algorithm. Joining SA and KA, execution time is decreasing and higher suc-
cess rate is achieved.

Zhang et al. [20] (2014) have presented a novel method to generate test data for
covering multiple paths at a time. The proposed method not only can cover multiple
paths at a time but also can detect faults present in the SUT. A weighted GA-based
model is constructed to solve their multi-objective optimization problem. The pro-
posed method is applied with several real-world programs like bubble sort and pro-
grams of Siemen’s suite as print_tokens.c, replace.c, schedule.c, tcas.c, etc. Their
reported results confirm that the proposed technique can generate test data for tra-
versing target paths as well as detecting maximum faults lying in the SUT.

Chen et al. [21] proposed a technique to optimize the backpropagation (BP)
neural network using improved adaptive genetic algorithm, that is, named as
IAGA-BP, which facilitates the use of Wi-Fi fingerprint data for positioning an
object. To enhance the biases and weights of the BP neural network, the selection,
crossover, and mutation operation of genetic-based algorithm are used. Each gen-
eration population will be arranged on the basis of capacity from high to low, and
20% population will come into the next level directly, where 20% population will
be cancelled and then the rest 80% is preferred by roulette algorithm. Lastly to
improve the accuracy of Wi-Fi positioning and to generate the convergence speed of
neural network, the IAGA-BP model can be used.

Deepti et al. [22] have given an extensive study on different white box testing
technique using GA. The authors have discussed about the path coverage-based
testing as well as the mutation testing. In their work every unit of software under test
(SUT) is tested by the developers, and GA has been used to generate an optimized
test data to cover the critical path as well as kill the mutants present in the SUT. A
complete scenario of the previous work can be drawn by their research work.

Robert et al. [23] presented a color image segmentation which used the graph cut
method, and this also used two constraints like color constraint and gradient con-
straint by minimizing the weighted energy function. Here, the researchers found the
results by taking input images where a number of segments are presented in a single
image and the algorithm and by applying genetic algorithm, that is, crossover and
mutation operators applied to various segments of the subgraphs which are obtained
by the graph of graph cut method. At last, the optimized method OGcut has been
applied which results in some non-overlapping segments. Some constraints are also
added in the proposed method to enhance the score of overlapping.

Latiu et al. [24] took three different evolutionary algorithms like GA, PSO, and
SA which help to generate test data automatically and take some comparison among

D. Rath et al.

99

them. They compared the PSO and SA (simulated annealing) with the GA by cor-
relating the branch distance metrics and approximation level.

Huang et al. [25] presented a noble technique using the operator self-activity
feedback (SAF) and Gaussian mutation (G) to enhance the performance of PSO by
substituting the weight inertia. The improved PSO algorithm provides a better per-
formance in multi-path test case generation.

Han et al. [15] designed a modified multi-path particle swarm optimization
(MMPPSO) to generate test data for multi-path. Authors involved various fitness
functions that are used to find the best position (pbest) and global position (gbest).
A branch distance function was designed to calculate the weight summation of sin-
gle path fitness function.

Sun et al. [26] designed an algorithm to improve both position and particle
velocity by modifying randomness. To enhance the algorithm evolution, a converge
analysis is used to find the inertia weight that provides the factor that has been accel-
erated. Also, a random sampling strategy is used to determine the sample of param-
eter setting and also modify randomness. To retain the convergence accuracy and
also enhance the rate of convergence, PSO algorithm is used.

Digehsara et al. [27] presented an algorithm to overcome the problems in PSO,
that is, selection of initial particle in PSO randomly, unable to balance search space.
To handle this problem, Halton-PSO was designed. Halton-PSO is union of initial
PSO and Halton sequence. Eleven benchmark functions and seven nonlinear engi-
neering problem are used for enhancement of PSO.

Biswas et al. [28] presented ACO-based algorithm to generate the optimal path
for a complete path coverage. This method provides a test data sequence that are
used as inputs to the generated path in the domain. This method assured that the
software path coverage has minimum redundancy.

Mann et al. [29] developed a path-prioritization-ant-colony optimization
(PP-ACO), that is, used to find all decision to decision path using CFG. Also, it
focuses to prioritize the optimal path and extract the path sequence using DD graph.
According to the path strength, path sequence was determined and also prioritizes
the best optimal path.

Wang et al. [30] designed an algorithm for analysis of multiple travelling
salesman problem (MTSP), which relied on improved ant colony optimization. This
paper is based on logistic factor distribution and vehicle capacity of every salesman.
Union of MTSP and 1-MST is used in improved ACO. To find optimal path and
efficient ACO algorithm, the combination of minimum spanning I-tree with ACO is
used. It states that though the application can’t assist the logistic distribution, yet it
enhances the relief work of earthquake and also makes the military operation
flexible.

Xiao et al. [31] presented an algorithm to enhance the consumption of energy-
efficient clustering in UWSNs which relied on improved ACO algorithm. Two
nodes, namely, cluster head node (CHN) and cluster member node (CMN), are used
to optimize the residual energy of nodes. CHN collects data, that is, it is transmitted
by CMN and sent them to the sink node using multiple hops. In this paper, the

Evolutionary Algorithms for Path Coverage Test Data Generation and Optimization…

100

development of heuristic information, pheromone update mechanism, and ant
searching scope are used to improve ACO algorithm.

Lam et al. [32] proposed an automatic generation of feasible independent paths
and test suite optimization using artificial bee colony (ABC). In this method, ABC
merges both gbest (global best) which are created by scout bees and pbest (local
best) method done by employed bees and onlooker bees. These three bees generate
feasible independent paths and also make the optimization process faster.

Khari et al. [33] designed two methods, that is, test suite generation and test
suite optimization. Different suite generation methods were found such as robust-
ness testing, worst-case testing, boundary value testing, random testing, and robust-
worst-case testing. Using artificial bee colony algorithm, the generation of test suite
was optimized to find the appropriate fitness level. This technique provides maxi-
mum path coverage and less redundancy than other algorithm.

Sun et al. [34] designed a technique to enhance the improvement of artificial bee
colony (ABC) algorithm along with random artificial bee colony (RABC) which are
used to explore the solution, and also the search scope method called tournament
selection strategy that is used to enhance the evolutionary process by improving
diversity population outcome of the analysis determines that RABC is accurate and
convergence speed is greater than other algorithm.

Malhotra et al. [35] took some utility-based algorithms like GA, ACO, and
ABCO and evaluated their various factors by taking test suites. The different factors
like number of covered paths and iteration number are taken, and test case number
is generated and generates the test suite time. At last, they observed that the ABCO
algorithm is efficient to generate test suites than the other two algorithms.

Huang et al. [36] developed an algorithm in 2018 for enhancing (ATCG-PC)
automated test case generation based on path coverage using fog computing. To
decrease the problem of classical differential evolution (DE), a test case path rela-
tionship matrix (PRM) is used, that is, RP-DE. Also, the fog computing uses pro-
grams like, iFogSim toolkit, which provides infeasible paths. The RP-DE is
developed by involving programs from iFogSim toolkit, and also it provides higher
path coverage and lower test cases.

Guo et al. [37] constructed an algorithm using preventive maintenance period
optimization mode (PMPOM) to receive an optimal maintenance period. A hybrid
algorithm, namely, PSOCS, is generated using the merits of Cuckoo search (CS)
and particle swarm optimization (PSO) algorithm. The reported result shows that
the proposed PSOCS is more efficient in convergence speed than the other previous
methods. The convergence speed is very high during solving the PMPOM problem.

Utama et al. [38] proposed an algorithm using hybrid butterfly optimization
algorithm (HBOA) to reduce the costs on green vehicle routing problem (GVRB).
Both butterfly optimization algorithm (BOA) and tabu search (TS) algorithm are
flip and swap method used to inspire HBOA algorithm. And it is concluded that
HBOA is used to minimize the cost distribution than other algorithms.

D. Rath et al.

101

4 � Conclusion

In this chapter, some related works on path coverage-based software testing have
been reviewed. Different types of static methods as well as dynamic methods have
already been used to generate and optimize the test data for path testing. For the
optimization purpose so many optimization techniques are also used, to cover the
critical path present in the software. It is also observed that to achieve highest path
coverage for more complex software, more efficient method is needed since the
main issue is the presence of critical paths in the software, for which it is very dif-
ficult to find an optimal test suite with maximum coverage. It is also observed that
the process of detecting and generating the test data to cover a critical path is the
most challenging issue during software path testing.

References

1.	Chauhan, N. (2010). Software testing: Principles and practices. Oxford University Press.
2.	Mall, R. (2018). Fundamentals of software engineering. PHI Learning Pvt. Ltd.
3.	Zhu, Z., Xu, X., & Jiao, L. (2017, June). Improved evolutionary generation of test data for

multiple paths in search-based software testing. In 2017 IEEE Congress on Evolutionary
Computation (CEC) (pp. 612–620). IEEE.

4.	Srivastava, P. R., & Kim, T. H. (2009). Application of genetic algorithm in software testing.
International Journal of Software Engineering and its Applications, 3(4), 87–96.

5.	Alshraideh, M., Mahafzah, B. A., & Al-Sharaeh, S. (2011). A multiple-population genetic
algorithm for branch coverage test data generation. Software Quality Journal, 19(3), 489–513.

6.	Mishra, D. B., Bilgaiyan, S., Mishra, R., Acharya, A. A., & Mishra, S. (2017). A review
of random test case generation using genetic algorithm. Indian Journal of Science and
Technology, 10(30).

7.	Bhuyan, M. K., Mohapatra, D. P., & Sethi, S. (2016). Software reliability prediction using
fuzzy min-max algorithm and recurrent neural network approach. International Journal of
Electrical and Computer Engineering (IJECE), 6(4), 1929–1938.

8.	Manikumar, T., Kumar, A. J. S., & Maruthamuthu, R. (2016). Automated test data generation
for branch testing using incremental genetic algorithm. Sādhanā, 41(9), 959–976.

9.	Sharma, A., Rishon, P., & Aggarwal, A. (2016). Software testing using genetic algorithms.
International Journal of Computer Science and Engineering Survey (IJCSES), 7(2), 21–33.

10.	Torkamani, M. A. (2014). Metric suite to evaluate reusability of software product line.
International Journal of Electrical and Computer Engineering (IJECE), 4(2), 285–294.

11.	Khari, M., & Kumar, P. (2017). An extensive evaluation of search-based software testing: A
review. Soft Computing, 1–14.

12.	Mansour, N., & Salame, M. (2004). Data generation for path testing. Software Quality Journal,
12(2), 121–136.

13.	Mishra, D.B., Mishra, R., Das, K.N., & Acharya, A.A. (2017). A systematic review of software
testing using evolutionary techniques. In Proceedings of sixth international conference on soft
computing for problem solving (pp. 174–184). Springer.

14.	Hermadi, I., Lokan, C., & Sarker, R. (2010, December). Genetic algorithm based path testing:
Challenges and key parameters. In 2010 second World Congress on Software Engineering
(WCSE) (Vol. 2, pp. 241–244). IEEE.

Evolutionary Algorithms for Path Coverage Test Data Generation and Optimization…

102

15.	Han, X., Lei, H., & Wang, Y. S. (2016). Multiple paths test data generation based on particle
swarm optimization. IET Software, 11(2), 41–47.

16.	Garg, D., & Garg, P. (2015). Basis path testing using SGA & HGA with ExLB fitness function.
Procedia Computer Science, 70, 593–602.

17.	Shimin, L., & Zhangang, W. (2011). Genetic algorithm and its application in the path-oriented
test data automatic generation. Procedia Engineering, 15, 1186–1190.

18.	Boopathi, M., Sujatha, R., Kumar, C.S., & Narasimman, S. (2014, October). The mathematics
of software testing using genetic algorithm. In 2014 3rd International Conference on
Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions)
(pp. 1–6). IEEE.

19.	Shahbazi, A., & Miller, J. (2016). Black-box string test case generation through a multi-
objective optimization. IEEE Transactions on Software Engineering, 42(4), 361–378.

20.	Zhang, Y., & Gong, D. (2014). Generating test data for both paths coverage and faults detection
using genetic algorithms: Multi-path case. Frontiers of Computer Science, 8(5), 726–740.

21.	Chen, Y., Zhang, J., Liu, Y., Zhao, S., Zhou, S., & Chen, J. (2020). Research on the prediction
method of ultimate bearing capacity of PBL based on IAGA-BPNN algorithm. IEEE Access,
8, 179141–179155.

22.	Mishra, D.B., Mishra, R., Acharya, A.A., & Das, K.N. (2019). Test data generation for mutation
testing using genetic algorithm. In Soft computing for problem solving (pp. 857–867). Springer.

23.	Robert Singh, A., & Suganya, A. (2020, January). Optimized Graph cut color image
segmentation using genetic algorithm with weighted constraints (OGcut).

24.	Latiu, G.I., Cret, O.A., & Vacariu, L. (2012, September). Automatic test data generation for
software path testing using evolutionary algorithms. In 2012 third international conference on
Emerging Intelligent Data and Web Technologies (EIDWT) (pp. 1–8). IEEE.

25.	Huang, M., Zhang, C., & Liang, X. (2014, December). Software test cases generation based on
improved particle swarm optimization. In 2014 2nd International Conference on Information
Technology and Electronic Commerce (ICITEC) (pp. 52–55). IEEE.

26.	Sun, L., Song, X., & Chen, T. (2019). An improved convergence particle swarm optimization
algorithm with random sampling of control parameters. Journal of Control Science and
Engineering, 2019.

27.	Digehsara, P. A., Chegini, S. N., Bagheri, A., & Roknsaraei, M. P. (2020). An improved
particle swarm optimization based on the reinforcement of the population initialization phase
by scrambled Halton sequence. Cogent Engineering, 7(1), 1737383.

28.	Biswas, S., Kaiser, M.S., & Mamun, S.A. (2015, May). Applying Ant Colony optimization
in software testing to generate prioritized optimal path and test data. In 2015 International
Conference on Electrical Engineering and Information Communication Technology (ICEEICT)
(pp. 1–6). IEEE.

29.	Mann, M. (2015). Generating and prioritizing optimal paths using ant colony optimization.
Computational Ecology and Software, 5(1), 1.

30.	Wang, M., Ma, T., Li, G., Zhai, X., & Qiao, S. (2020). Ant Colony optimization with an
improved pheromone model for solving MTSP with capacity and time window constraint.
IEEE Access, 8, 106872–106879.

31.	Xiao, X., & Huang, H. (2020). A clustering routing algorithm based on improved Ant Colony
optimization algorithms for underwater wireless sensor networks. Algorithms, 13(10), 250.

32.	Lam, S. S. B., Raju, M. H. P., Ch, S., & Srivastav, P. R. (2012). Automated generation of
independent paths and test suite optimization using artificial bee colony. Procedia Engineering,
30, 191–200.

33.	Khari, M., Kumar, P., Burgos, D., & Crespo, R. G. (2017). Optimized test suites for automated
testing using different optimization techniques. Soft Computing, 1–12.

34.	Sun, L., Chen, T., & Zhang, Q. (2018). An artificial bee colony algorithm with random location
updating. Scientific Programming, 2018.

D. Rath et al.

103

35.	Malhotra, R., & Kumar, N. (2016, September). Automatic test data generator: A tool based
on search-based techniques. In 2016 5th International Conference on Reliability, Infocom
Technologies and Optimization (Trends and Future Directions) (ICRITO) (pp. 570–576). IEEE.

36.	Huang, H., Liu, F., Yang, Z., & Hao, Z. (2018). Automated test case generation based on
differential evolution with relationship matrix for iFogSim toolkit. IEEE Transactions on
Industrial Informatics, 14(11), 5005–5016.

37.	Guo, J., Sun, Z., Tang, H., Jia, X., Wang, S., Yan, X., Ye, G., & Wu, G. (2016). Hybrid
optimization algorithm of particle swarm optimization and cuckoo search for preventive
maintenance period optimization. Discrete Dynamics in Nature and Society, 2016.

38.	Utama, D. M., Widodo, D. S., Ibrahim, M. F., & Dewi, S. K. (2020). A new hybrid
butterfly optimization algorithm for green vehicle routing problem. Journal of Advanced
Transportation, 2020.

Evolutionary Algorithms for Path Coverage Test Data Generation and Optimization…

105

A Survey on Applications, Challenges,
and Meta-Heuristic-Based Solutions
in Wireless Sensor Network

Neha Sharma and Vishal Gupta

1 � Introduction

A wireless sensor network (WSN) helps industries to improve their productivity and
reliability at low cost and hence used a lot in industries. A wireless sensor network
is a wireless network consisting of spatially distributed autonomous devices that use
sensors to monitor physical or environmental conditions [1, 2]. The WSN is a col-
lection of a low-powered and small-sized sensor nodes [3], and these devices are
autonomous in nature, and due to this feature, it can be installed in different envi-
ronments. This feature results in numerous applications of WSN in real life. WSN
is a field which is used for public as well as military purpose on large scale [4].
Applications like health care monitoring, water waste management, land irrigation,
biodiversity mapping, agriculture, natural calamities, and normal household work
are to be named of few, where sensor is used (IoT is a major application of WSN,
used by general public day to day, to complete their basic works).

To accomplish the abovementioned tasks, one needs to handle the different issues
of the WSN, namely, power management, node deployment, scalability, connectiv-
ity, coverage, security, routing efficiency, and localization problem. Meta-heuristic
is a higher-level technique to generate or select an optimal solution of a problem or
a better solution than others. Meta-heuristic is also used to optimize the solutions in
WSN. For different issues of WSN, different meta-heuristic algorithms are applied.
Numerous researchers have worked in the field of meta-heuristic, and they have

N. Sharma (*)
AIACT&R, GGSIPU, Delhi, India

Department of IT ADGITM, GGSIPU, Delhi, India
e-mail: neha.sharma@adgitmdelhi.ac.in

V. Gupta
Department of CSE, NSUT East Campus, Formerly AIACT&R, Delhi, India
e-mail: vishal.gupta@aiactr.ac.in

© Springer Nature Switzerland AG 2022
M. Khari et al. (eds.), Optimization of Automated Software Testing Using
Meta-Heuristic Techniques, EAI/Springer Innovations in Communication and
Computing, https://doi.org/10.1007/978-3-031-07297-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07297-0_8&domain=pdf
mailto:neha.sharma@adgitmdelhi.ac.in
mailto:vishal.gupta@aiactr.ac.in
https://doi.org/10.1007/978-3-031-07297-0_8

106

Internet

Sink Node

Wireless Sensor Network

Sensor Node Target
User

Fig. 1  Wireless sensor network [5]

suggested that the use of meta-heuristic in the field of WSN can result in more effi-
cient and time-saving systems. Use of meta-heuristic helps in minimizing error
in localization algorithms which are clustering based and helps in energy efficiency
and routing efficiency. Fig. 1 shows the basic design of WSN.

Metaheuristic is amazing optimization technique, which can be used in number
of real-world applications. Metaheuristic can be used in software testing automa-
tion. In the field of software, software coverage, test cases, generating test data,
energy function improvement, elimination of explicit states, etc. can be optimized
using meta-heuristic. This paper is divided into different sections: Section 2 consists
of research methodology. Section 3 consists of different types of WSN. Section 4
analyzes the major application areas of WSN and its challenges. Section 5 focuses
on meta-heuristic. Section 6 comprises of a literature review on meta-heuristic tech-
niques used in WSN. And at last, Sect. 7 provides an informative conclusion of
the paper.

2 � Research Methodology

As the nature of research in wireless sensor network is very difficult to incarcerate
to define disciplines, the related materials are scattered across various journals. The
major challenges are localization problem, coverage and deployment, energy and
power management, and routing efficiency in wireless sensor network.

Meta-heuristic can be used in solving challenges of WSN. Many researchers
have collaborated WSN with meta-heuristic, and results suggest that solutions pro-
vided by these techniques are more efficient. These problems are the common for
research in wireless sensor network. Accordingly, the following online journal data-
bases were searched to provide a complete bibliography of the academic literature

N. Sharma and V. Gupta

107

ONLINE
DATABASE

EXCLUDE

Journal
Article

Search criteria:
Wireless sensor network & meta-heuristic Published

between 2008-2019

NO (Conference papers, master/doctoral dissertations,
textbooks and unpublished working papers)

YES

YES

YES

NO

NO

• Artificial Bee Colony.

• Bat Algorithm

• Ant Colony Optimization

• Particle Swarm Optimization

• Genetic Algorithm

Related to
WSN

Meta-heuristic algorithm:

Related to
Meta-heuristic

Initial
classification

Result of articles

Final
classification

Result of articles

Consistency of
Classification Result
among researchers

Inconsistency of
Classification Result
among researchers

A majority decision will be
considered final

1. Re-verification of
 classification result

2. Final verification of
 classification result

Discussion on
Initial

classification

Fig. 2  Research methodology

on wireless sensor network and meta-heuristic. Figure 2 depicts the research meth-
odology used for the survey.

•	 ACM digital library database
•	 Springer
•	 IGI Global

A Survey on Applications, Challenges, and Meta-Heuristic-Based Solutions in Wireless…

108

•	 Wiley
•	 Science Direct
•	 IEEE Transaction

3 � Different Types of WSN

WSN are installed in different places, according to the requirement, like on land,
underground, and underwater. Depending upon their deployment environment, they
face different issues. In the current scenario, we are dealing with five categories of
WSN, as shown in Fig. 3.

Fig. 3  Types of WSN

N. Sharma and V. Gupta

109

3.1 � Mobile WSN

In mobile WSN, sensor nodes can interact with the physical environment and can
move on their own [6]. It is a collection of nodes, which can sense the environment,
communicate, compute information, and can also relocate. Since sensor nodes are
mobile, only dynamic routing algorithms can be applied here. Examples of this
category of WSN are tracking and searching and military surveillance. The cover-
age and connectivity provided by mobile WSN are better than static WSN [7].

3.2 � Multimedia WSN

Multimedia WSN tracks and monitors events in the form of images, video, or audio
form. Camera and microphone are equipped; low-cost sensor nodes are installed in
a way to provide assured coverage [8]. But few problems are associated with this,
and as multimedia form is used, high bandwidth is required, and quality of service
and use of good compression techniques to smoothen the transfer and data process-
ing are other issues.

3.3 � Underwater WSN

In underwater WSN, a group of sensor nodes and vehicles are kept underwater.
Managing sensor nodes underwater is an expensive technique, and hence, only a
few sensor nodes are installed underwater, and to explore and collect data from sen-
sor nodes, vehicles are used [9, 10]. For communication in water, acoustic waves are
used, and it has its own challenges to work with like limited bandwidth, under-
ground signal fading, long propagation delay, and high latency. These nodes must
have a self-configuring feature. These nodes have limited battery, and due to the
ocean environment, battery of nodes cannot be replaced. This technique is very use-
ful for underwater surveillance, pollution monitoring in rivers or oceans, underwa-
ter robotics, and most important disaster prevention.

3.4 � Underground WSN

In underground WSN, to monitor underground conditions, sensor nodes are placed
underground [11]. Additional sink nodes are located aboveground, to convey infor-
mation from underground sensor nodes to base station [12]. Its maintenance is dif-
ficult and costlier than the terrestrial WSN as suitable equipment are required for

A Survey on Applications, Challenges, and Meta-Heuristic-Based Solutions in Wireless…

110

communication through soil and rocks. Few applications of underground WSN are
military border monitoring, landscape management, and agriculture monitoring.

3.5 � Terrestrial WSN

In terrestrial WSN, nodes are installed on land in a prearranged area. Its cost is
comparatively low, and static routing is used here. In a dense environment, these
nodes are capable of efficiently communicating data back to the station [13]. Battery
is a major challenge in WSN, and as it has limited power and mostly non-
rechargeable, these are used as secondary power source. Applications of terrestrial
WSN are surface exploration, industrial monitoring, environmental sensing, etc.

3.6 � Application and Challenges of WSN

WSN have been implemented in various application domains. The growth and its
use in real world suggest that in the next few decades, sensor nodes will be embed-
ded in most of the objects to make them smart. Its biggest example is the Internet of
Things (IoT), and it is making day-to-day items smart by making them communi-
cate with other smart objects and humans. IoT uses sensor nodes for all these works,
and the current scenario suggests that it will grow more and will enhance the smart-
ness of objects. Figure 4 depicts the major application areas of WSN.

In military applications, use of WSN helped a lot and still needs further enhance-
ments to improve it. Military applications include security and surveillance, self-
healing minefields, border monitoring, search and rescue operations, sniper
detection, etc. To detect shooters and to locate them, a counter-sniper named PinPtr

Military

Biodiversity
Mapping

Home

Natural
Calamities

Major
Applications

of WSN

Health Care

Agriculture

Fig. 4  Major application
area of WSNs

N. Sharma and V. Gupta

111

is developed [14]. The acoustic shock waves initiated from the gunfire sound, and
muzzle blast is sensed by ad hoc acoustic sensor networks. For search and rescue
operations, CenWits is used, which determines small area to concentrate for search
and rescue operations [15].

Application areas of WSN in agriculture are landscape management, and to save
energy in greenhouses, sensors are also used in livestock to keep it healthier, to
check soil quality, and to determine micro changes in soil and many more. So, in so
many fields, WSN is used, and it is helping farmers and scientists to improve soil
quality and to save energy.

WSNs’ use in the health care industry is phenomenal in patient monitoring, long-
term data collection, care center monitoring, [16] etc. WSN is also used in biodiver-
sity mapping and is very useful for rare flora and fauna species mapping. With the
help of sensor nodes, it is easy and effective to find out the locations and count of
such rare species and keep track of these.

Natural calamities result in extensive loss of lives and property. That’s why
disaster management emphasizes on involving multifunctional and multidisci-
plinary engineering approaches to reduce natural calamities hazards. With the help
of WSN, chances of calamities like earthquakes, volcanic eruptions, landslide,
floods, storms, blizzards, and droughts can be predicted before time, and preventive
actions can be taken accordingly.

WSN’s optimization is very much important, and there are many issues and chal-
lenges in WSN, which reduce the lifetime and efficiency of WSN. The future
research focuses on the different challenges mentioned as below and tries to pro-
pose new and innovative solutions to optimize the lifetime and performance of the
WSN. Figure 5 depicts the challenges of the WSN.

WSN Challenges Category
Design Issues • Fault

• Low latency
• Scalability
• Transmission media
• Coverage problems

Implementation Issues

Challenges under Category

• Geographic Routing
• Sensor Holes
• Coverage Topology
• Medium Access Schemes
• Deployment
• Localization
• Synchronization

Fig. 5  WSN challenges

A Survey on Applications, Challenges, and Meta-Heuristic-Based Solutions in Wireless…

112

4 � Meta-Heuristic

Meta-heuristics diverse nature helps in finding the global optima for a problem by
skipping the local optima. Algorithms like artificial bee colony, ant colony optimi-
zation, and particle swarm optimization have grown a lot in past few years. Each
algorithm is based upon different parameters, and they are developed on different
characters also, for example, some algorithms are physics inspired, whereas few are
bio-inspired. Few of these algorithms are discussed in this section.

4.1 � Genetic Algorithm

In 1960, John Holland introduced an algorithm based upon Darwin’s theory of evo-
lution. Then after, depending upon different issues, Goldberg and John Holland
improved the algorithm. It is used in a number of problems for optimization. The
steps of genetic algorithm are as follows [17]:

	 (i)	 Create initial population

Repeat

	(ii)	 Provide ranking to the population, according to the fitness
	(iii)	 Cut the weaker solution
	(iv)	 Breed the remaining solutions
	(v)	 Mutate the offsprings

Until termination condition
Terminate

Genetic algorithms’ major limitation is the enormous time it takes to find the
optimal solution although after enhancements, and it still works better than a few
other algorithms.

4.2 � Particle Swarm Optimization

James Kennedy and Russell Eberhart proposed population-based optimization algo-
rithm in 1995, on the behavior of swarm particles. The steps of PSO are as fol-
lows [18]:

•	 Initialization
•	 Initial generation of the particles
•	 Calculate velocities of the particles
•	 Update the best solution
•	 Stopping criteria

N. Sharma and V. Gupta

113

In PSO, a group of random particles are assigned, and then by updating genera-
tions, optima is searched. Two best solutions are used to update each particle:

•	 Best solution achieved up to this generation, called pbest.
•	 Best value achieved by any particle in the population so far. This is the global

best called gbest.

Now, the particles update their velocity, using two best values, as shown in Eq. 1

	

v = v + c1 * pbest present + c2

* gbest pr

* *� � � � � � � � � �� � � �
� �

rand rand

 eesent

present = present + v

� �� �
� � � � � � 	

(1)

where v[] is the particle velocity, present[] is the current particle (solution), rands()
is a random number between 0 and 1, and c1 and c2 are learning factors.

4.3 � Ant Colony Optimization

In 1999, Marco Dorigo and Gianni Di Caro proposed a meta-heuristic-based ant
colony algorithm and named it as ant colony optimization [19]. It can be applied on
discrete optimization problems. It works on the behavior of ants, and ants deposit
pheromones on the path that form a trail for other ants. The pheromones on the
longer path evaporate and result into the shortest path to be used by default by all
other ants. This results in the optimal solution for that problem. This method is used
to find the optimal solution for problems like communication, traveling salesman
problem, vehicle routing, etc.

4.4 � Artificial Bee Colony

Karaboga and Bastruck [21] proposed a population-based algorithm named artifi-
cial bee colony. The algorithm execution steps are following:

•	 Process initialization
•	 Repeating the process until requirements are not met:

	 (a)	 Employed bees to be kept in the memory for the food sources.
	 (b)	 Onlooker bees also should to be kept in memory on the food sources.
	 (c)	 Scouts will be sent for new food sources searching.

For food source, pi can be calculated as

	

pi
i

n n

�
��
fit

fit
SN

1 	

(2)

A Survey on Applications, Challenges, and Meta-Heuristic-Based Solutions in Wireless…

114

where solution i’s fitness value is symbolized by fiti and number of food sources is
represented by SN. The candidate food position calculation is done by:

	
v x x xij ij ij ij kj� � �� ��

	
(3)

where k 2 1, 2, ..., BN and j 2 1, 2, ..., D are randomly chosen indexes. Eqs. 2 and 3
are used to define the path calculation for food sources.

4.5 � Bat Algorithm

Xin-She Yang in 2010 proposed bat algorithm for optimization. It is based on the
echolocation behavior of bats [22]. The automatic control and auto-zooming into
the region are possible with the help of loudness and pulse emission rates. This acts
as the advantage of the algorithm. But this algorithm may lead to stagnation after
the initial stage, if the algorithm is allowed to switch to exploitation. Table 1 elabo-
rates the advantages and limitations of the above-explained meta-heuristic
algorithms.

Table 1  Advantages and limitation of few meta-heuristic algorithms

Algorithm Advantages Limitations
Applications
in WSN

Artificial bee
colony

Control parameters are less
Convergence is fast Both
exploitation and
exploration

Here, search space is limited by
initial solution

Energy
efficiency
Deployment
Localization
Routing
Clustering

Bat algorithm Automatic control and auto
zooming of region

Stagnation after initial stage is
very common, if exploitation
stage is quick

Deployment
Clustering
Localization

Ant colony
optimization

It can search among a
population in parallel

It has dependent sequences of
random decisions. It takes
uncertain time for convergence.
Here, probability distribution can
change for each iteration

Energy
efficiency
Routing
Clustering

Particle swarm
optimization

No overlapping and no
mutation calculation.
Searching is very fast, with
the rate of speed of the
particle

For problems of scattering,
satisfactory results not found. For
non-coordinate systems, technique
is not good. Problem of partial
optimism

Energy
efficiency
Clustering
Routing

Genetic
algorithm

It can find nearer optimal
solutions

It takes a long time to find near
optima, but still better than few
other algorithms. It is very
sensitive to input parameters

Routing
Energy
efficiency

N. Sharma and V. Gupta

115

5 � Meta-Heuristic Techniques Used in WSN:
Literature Review

Meta-heuristic is a good solution to WSN challenges and issues. Some researchers
suggest that the optimal solutions provided by the meta-heuristic algorithms are
probably the best possible solution for the problem. The solution presented by the
different researchers in the literature can be presented below.

Hoang et al. [23] suggest that to extend the lifetime of network operations, opti-
mization is a good solution. HSA protocol has been proposed, and WSNs’ lifetime
had been extended using this. HSA is more effective in comparison with that of
LEACH-C and FCM protocols.

Ado Adamou et al. [24] proposed ABC-SD protocol. ABC optimization algo-
rithms’ few fast searching features had been exploited in the proposed algorithm for
the clustering process. Kil-Woong Jang [25] proposed an algorithm for minimizing
energy consumption in cluster nodes. A meta-heuristic-based channel algorithm is
proposed for minimizing energy consumption in WSN. D.C. Hoang et al. [26] pro-
posed the use of their earlier proposed algorithm HSA. According to them, HSA can
be used for energy optimization in network and reducing intra-cluster distance.
Khalil et al. [27] proposed an algorithm EAERP. It is based on a new evolutionary-
based dynamic cluster formation in WSN. The technique guarantees a well-
distributed energy consumption.

Khari [28] explained the need for WSN and comparison of different protocols
like LEACH, SEP, and TEEN. M. Dhivya et al. [29] focused on data gathering.
Cuckoo search optimization technique is applied for data gathering process. Suneet
Kumar Gupta et al. [30] focused on the two most important issues of target-based
wireless sensor network, coverage, and connectivity. Genetic algorithm is used for
solving the above problems, and promising results were found. Stefka Fidanova
et al. [32] focused on the issue of the famous telecommunication problem of provid-
ing monitoring regions, a full coverage. The motive is to use the tiniest number of
sensors and lesser energy consumption for the above problem. Ant colony optimiza-
tion is used to solve this multi-objective problem. Palvinder Singh Mann et al. [33]
proposed an ABC meta-heuristic algorithm. Energy-aware data routing and node
clustering in WSN are solved by the proposed algorithm. For efficient clustering of
sensor nodes, a cluster head selection algorithm with a multi-objective fitness func-
tion is also proposed.

Jain et al. [34] explained different energy aware and shortest path-based route
selection approaches to enhance the routing efficiency of the sensor network.
Kalpna Guleria et al. [35] focused on the energy-efficient load balanced routing
protocols. The authors proposed a novel meta-heuristic ant colony optimization-
based unequal clustering (MHACO-UC). The algorithm is useful for optimal path
selection and cluster head selection. Lifetime of the cluster head node is increased
by the proposed unequal clustering method, rendezvous node (Rnode). Khari et al.
[36] explain the recent trends in the field of network security analytics for the per-
spective of research. Mohsin Masood et al. [37] proposed a meta-heuristic-based

A Survey on Applications, Challenges, and Meta-Heuristic-Based Solutions in Wireless…

116

algorithm for MPLS/GMPLS networks for selecting efficient routes. BAT-inspired
algorithm is used with various levels of loudness parameter, where objective func-
tion is routing costs. The aim is to minimize the routing cost. Seyed ali et al. [38]
enhanced the capabilities of famous grey wolf optimizer (GWO), to save and
retrieve pareto optimal solution. The proposed algorithm is named as multi-objective
grey wolf optimizer (MOGWO). This method uses the social hierarchy behavior of
grey wolves and their hunting skills in multi-objective space and stimulates them.
Selcuk Okdem et al. [39] proposed an application of artificial bee colony algorithm
in WSN. The simulation results show that the algorithm provides longer network
life and as a result saves more energy.

Muhammad Saleem et al. [40] focused on the principle of swarm intelligence
and presented a survey of number of routing protocols based on this technique in
WSN. The authors also focused on the applications of swarm intelligence in routing
and its general principles. Suneet Kumar Gupta et al. [41] focused on the coverage
and connectivity issues of target-based WSN. With the help of genetic algorithm,
this NP-complete problem is solved. Chandra Naik et al. [42] focused on extending
the lifetime of network in WSN. Differential evolution algorithm that is used to
solve target coverage problem is WSN. Oumayma Bahri et al. [43] focused on the
multi-objective vehicle routing problem (VRP), with uncertain demands. SPEA2
and NSGAII are two pareto-based evolutionary algorithms, and their extensions are
proposed here to solve VRP. Sepehr Ebrahimi Mood et al. [44] proposed a method
to determine the best cluster head in each round. The method focused on link quality
and energy consumption techniques to find optimal cluster heads. It follows some
steps: Firstly calculate optimal number of clusters, then organize the clusters, and
then after determine the best cluster head in each round.

Agarwal et al. [45] focused on deep learning models for the detection of
DDOS. Deep learning model is used for detection of DDOS on cloud storage. Saini
et al. [46] focused on ad hoc network node behavior and different defensive solu-
tions for the same. Vimal et al. [47] explained the use of multi-objective ACO for
IoT-based cognitive radio networks. Double Q learning algorithm is used for IoT
models with data aggregation and energy-constrained devices.

Tabu search is a meta-heuristic search method based on the next k neighbors’
algorithm. Despite the fact that tabu search can handle a wide range of real-world
problems, this is the first study of its use to software testing. The structure of TS,
which entails searching inside a solution’s neighborhood and remembering the best
solutions, gives it a simple and obvious technique for creating branch coverage
tests. Furthermore, TS is an effective strategy for generating very high branch cov-
erage, based on the experimental findings produced with our tabu algorithm. This
paper opens two distinct areas of investigation: the study of algorithm behavior
when tabu parameters change and the use of TS to gain various sorts of software
coverage [48].

The authors [49] have introduced the G odelTest framework and demonstrated its
capabilities on a basic example that is tough for both Boltzmann samplers and
Quick Check’s analytical and programmatic approaches. The authors also

N. Sharma and V. Gupta

117

mentioned that in the future, G odelTest might be used to generate test data for more
complicated data structures, as well as formulations for local samplers that allow a
sufficient degree of freedom to meet bias requirements while staying searchable.
They also claimed that G odelTest’s separation of the choice model from the pro-
gram will make it easier to use the same framework for constrained exhaustive
generation and machine learning-based dynamic sampler adaption.

The authors [50] created test cases as extended sequences of semantically inter-
acting events using a SA algorithm. Sequences of semantically interacting events
were used to create test cases. We also devised an energy function based on the test
cases’ capacity to encompass a large number of events with a high degree of varia-
tion, as well as a definite continuity of events. Our results show that the suggested
SO-SA algorithm outperforms the incremental SA method, is competitive with the
GA, and outperforms the greedy approach significantly. The SA algorithm will be
compared to more meta-heuristics in the future, with the goal of improving the
components of the energy function based on larger applications. There are several
software test issues that typical software engineering methodologies may not be
able to tackle. Nonetheless, similar problems can be theoretically described and
solved via mathematical optimization, particularly with the help of metaheuristics.

A new study subject known as search-based software engineering (SBSE) [51]
has arisen, which focuses on using optimization approaches to solve software engi-
neering challenges. Because of the importance of the software testing phase, a spe-
cific subarea known as search-based software testing (SBST) has grown in
importance. This article summarizes the current situation of the area as well as its
future possibilities. To begin, we’ll go over the most common metaheuristics strate-
gies employed in the field. The state of the art of SBST is then presented through a
summary of the primary difficulties that have already been modeled as well as the
findings obtained. We can see the potential of this field based on the findings.

Ricca et al. [52] introduced a unified modeling language-based test generating
model. These methods go beyond typical path-based testing and incorporate ele-
ments of model-based testing. Because the testing models are produced from the
web application code, they are categorized as “white box” testing methodologies.
The key issues for testing web applications with dynamic features techniques are
how to describe the program and what strategy to apply to choose test cases from a
large number of options. There hasn’t been much study on using state transition
diagrams to evaluate web apps with dynamic features.

Marchetto et al. [53] presented a state-based testing technique for Web 2.0 apps
to accommodate the new features. The DOM affected by AJAX code is abstracted
into a state model in which state transitions are coupled with callback executions
triggered by asynchronous messages received from the web server. The test cases
are derived from the state model, which is based on the concept of semantically
interconnected events. This form of testing has been shown to be effective in detect-
ing flaws via empirical evidence. However, because this technique generates a huge
number of test cases, the test suites' use may be limited.

A Survey on Applications, Challenges, and Meta-Heuristic-Based Solutions in Wireless…

118

6 � Work Done in WSN Using Meta-Heuristic

6.1 � Artificial Bee Colony

According to Chandra et al. [54], one of the primary issues in WSN is increasing the
life span of a sensor network, which clustering effectively addresses. The usage of
the ABC method in cluster head selection is also depicted in multi-hop WSN, which
is also documented in this work. The notion of load balancing is used to efficiently
utilize energy, and the dynamic channel allocation (DCA) also aids in load balanc-
ing inside clustered networks. Not only that, but the numerous simulation results
show that DCA may forward packets without causing packet loss. Higher through-
put, improved energy efficiency, lower delay, and a longer network lifetime are all
advantages of utilizing this technology. The authors concentrated on the WSN’s
deployment difficulty and used an upgraded version of the ABC algorithm to solve
the problem [55].

Ari et al. [24] explained that it’s still a problem to build a climbable and energy-
efficient sensor network while maximizing its life span. Various laws and regula-
tions have been suggested in order to aid in the management of wireless sensor
networks (WSNs). Routing includes significant actions that have a significant
impact on the network’s quantity and duration. The approach of clustering with data
collecting on cluster heads, which also provides efficient salability in such WSNs,
significantly improves network life span. This research investigates the ABC algo-
rithm’s speedy searching features and competent clustering protocols, as well as a
centralized clustering process using data collection techniques and recognition of
routing processes in a well-distributed network. The collected results show the effi-
cacy of the suggested protocol in terms of network lifetime and the number of pack-
ets transferred.

Because of the large capacity of sensor networks to allow programmers that con-
nect the two worlds, both real and virtual, skilled layout and competent designs of
wireless sensor networks have become a hotspot of research. Pawandeep et al. [56]
explain that WSN is used in surveillance, medical monitoring, and other applica-
tions. They’re frequently used to calculate changes in environmental variables such
as temperature, pressure, moisture, noise, blood pressure, and heart rate. Sensor
nodes are typically made up of a small number of sensors and a mote unit. The sen-
sors in this study are called after the ABC method.

Efficient clustering is a well-known and well-documented optimization topic in
wireless sensor networks (WSNs). The artificial bee colony (ABC) metaheuristic is
a new addition to a group of computational intelligence approaches that have been
applied to WSNs [57]. These techniques include evolutionary algorithms, reinforce-
ment learning, and artificial immune systems. ABC is substantially more common
than other population-based metaheuristics in WSNs since it is simple to apply and
adaptive. The deficiency in its search equations is due to a poor execution cycle and
the demand of specific control parameters. We present an updated version of ABC
with a better solution search problem to increase the exploitation capabilities of

N. Sharma and V. Gupta

119

existing metaheuristics. A better sampling strategy based on the student’s
t-distribution requires just one control parameter to compute and store, which
improves global convergence and hence the efficiency of the suggested metaheuris-
tics. The suggested metaheuristics maintain a good balance between exploration
and exploitation with minimum memory requirements, and it also has a first-of-its-
kind compact student’s t-distribution, making it ideal for the tiny hardware require-
ments of WSPs. An energy-efficient clustering methodology based on ABC is
described in order to make WSNs more energy efficient; it achieves optimal cluster
heads along the optical base station location. According to simulation results, the
new clustering protocol beats other well-known protocols in terms of packet deliv-
ery, energy consumption, network failure, and latency.

Wireless sensor network (WSN) architectures with multiple utility fields, such as
army, medical, meteorology, and geology, require reliable communication and pow-
erful routing algorithms [58]. The overall performance of the ABC algorithm on
routing tasks in WSNs is investigated in this study. According to the obtained per-
formance results, the protocol in use allows for a longer network life span time by
conserving energy. The ABC algorithm is used to assess the complexity of cluster-
based routing algorithms. Complete performance and analysis results approve that
ABC’s set of rules offer promising solutions on WSN routings.

6.2 � Ant Colony Optimization

Different problems are optimized using an artificial bee colony-based approach.
The following are some problems for which ABC can be utilized as a solution.

Nayyar et al. [59] explained that WSNs encounter a variety of issues and chal-
lenges in terms of energy efficiency, limited processing capabilities, routing over-
head, packet delivery, and so on. The development of energy-efficient routing
protocols has always been a stumbling block for WSNs. To date, a number of rout-
ing protocols have been proposed to solve problems based on swarm intelligence.
Algorithms based entirely on swarm intelligence are thoroughly investigated and
discovered to be adaptable and scalable. This study presents a complete assessment
of ant colony optimization-based routing protocols for WSNs in order to give a bet-
ter platform for academics to work on the many flaws of protocols that have been
developed to date.

Fidanova et al. [32] explains that physical or environmental conditions are moni-
tored by WSNs. Full coverage of the tracking location with a minimum number of
sensors and network energy consumption is one of the primary goals at some time
during their implementation. This problem is difficult, which is why the best way to
tackle it is to use some meta-heuristics. This research demonstrates how multi-goal
ant colony optimization can be used to overcome this significant telecommunica-
tions barrier. Because the number of ANT increases computational time and mem-
ory requirements, it is critical to choose the most acceptable range of sellers required
to obtain appropriate answers with the least amount of computer resources. As a

A Survey on Applications, Challenges, and Meta-Heuristic-Based Solutions in Wireless…

120

result, the goal of this paper is to investigate the impact of a wide range of ANTs on
the algorithm.

Because WSNs operate on batteries, it is excellent to create routes in them for
commercial programmers to perform properly [60]. This work focuses on develop-
ing a routing system that enhances a WSN’s energy conservation in order to extend
battery life. Three parameters have been considered in making a decision for the
route to be taken which were the sensor energy in joules, the number of visitors in
Erlang, and the space in meters required for a packet to be sent from the supply to
the vacation spot node. After that, the routing protocol was integrated into a fuzzy
logic and ACO system. The entire node cost to the gateway was calculated using
fuzzy logic, which took into account the node’s traffic load and energy. The shortest
route from the source to the destination sensor node was found and evaluated using
ant colony optimization (ACO).

When compared to the overall performance of ACO when observed under simi-
lar conditions, the results derived from the MATLAB simulation indicated improved
performance in energy conservation.

6.3 � Bat Algorithm

The compact bat algorithm [61] is used to solve optimization challenges involving
hardware. On probabilistic operations, the proposed algorithm is employed. Nonstop
multimodal and WSN uneven clustering are also used to test the technique.

Smart bat algorithm [62] is presented as a way to improve fuzzy approaches and
boost searching behavior. The algorithm is implemented in the WSN’s 3D
environment.

The bat algorithm is used to determine the precision of node localization [31].
The method may also aid with bacterial foraging optimization, according to the
researchers. It is particularly successful in resolving WSN-related geographical
challenges.

Kavita et al. [63] explain that clustering is a critical topic in WSN. Clusters in the
network can be formed based on both the physical location of the nodes and a few
overall performance factors. Furthermore, the cluster’s nodes are both homoge-
neous and diverse in character. An aim function is proposed in the suggested tech-
nique, and the goal function is used for the implementation of the space among
nodes, which is computed using the bat algorithm, and the space is then used for
clustering inside the network. The proposed method’s impacts are then compared to
the core algorithms. The proposed method’s impacts are then compared to the core
algorithms. The results also validate the algorithm and compare performance fac-
tors such as residual energy, end-to-end delay, and network throughput.

Many wireless sensor network (WSN) applications demand information about
each sensor node’s geographic position. WSN devices are expected to be deployed
in huge numbers in a sensing field and self-organize in order to accomplish sensing
and acting tasks [64]. The purpose of localization is to assign geographical

N. Sharma and V. Gupta

121

coordinates to each device in the deployment region that has an unknown position.
The application of optimization methods to solve the localization problem has
recently become a common strategy. The bat technique is used to estimate the sen-
sor’s position in this research.

Because of their diverse uses, wireless sensor networks (WSNs) have received a
lot of attention. Node localization is one of the most important challenges in WSN;
node localization functionality is reasonably perfect for overall assessment in moni-
toring systems [65]. Because most sensors cannot recognize their positions due to
the value and length of sensors, localization is defined as predicting the locations of
sensors from unknown area statistics. The fundamental goal of localization is to find
the placements of nodes in a short amount of time with a low energy cost; as a result,
new tactics based on swarm intelligence techniques are being used, and node local-
ization is being seen as an optimization problem in a multidimensional space. The
meta-heuristic bat algorithm has recently been offered as a solution to the node
localization problem. This study introduces Dopeffbat, an efficient solution for the
node localization problem that incorporates Doppler effects to improve overall per-
formance. It iteratively computes the nodes’ positions using the Euclidian distance
(via evolution). When this approach is used on a large WSN with a lot of sensors, it
performs well in terms of node localization.

The introduction of modern and various applications in the telecommunications
industry has created challenging conditions in the networking field in terms of effi-
cient use of network resources and overall performance optimization [66]. As a
result, MPLS/GMPLS (generalized multiprotocol label switching) networks were
introduced to provide a better service to fulfil customers’ needs while also optimiz-
ing network resources. The study employs the bat algorithm with a variety of loud-
ness levels. The simulation findings suggest that MPLS/GMPLS networks of
various sizes function better.

Rathour et al. [67] discussed that one of the primary subjects of research in WSN
is to compute cluster heads (CH) more precisely and accurately to get better results.
WSN is a major field among researches to get better and enhanced network lifetime.
Researchers are now focusing on cluster head selection, taking into account a grow-
ing number of factors such as residual energy, distance from the base station, and so
on. In a recent study, the number of sensors present for a particular sensor node has
been used to select a cluster head node. We propose a modified technique that
employs the bat algorithm to achieve a CH election that is both optimal and quick.

6.4 � Cuckoo Algorithm

Dermi et al. [68] explained that wireless sensor networks (WSN) are a new type of
technology that aims to provide modern solutions and capabilities. Their application
is growing in a variety of disciplines, including fitness, the environment, and the
war. However, the sensor nodes’ limited resources are a real barrier, especially in
terms of energy autonomy. As a result, one of the most difficult challenges in

A Survey on Applications, Challenges, and Meta-Heuristic-Based Solutions in Wireless…

122

installing this type of network is developing an energy-conscious routing protocol
to extend the system’s life span. Clustering is one of the most often used ways for
successfully utilizing the network’s energy. The latest bio-stimulated optimization
method is the Cuckoo search algorithm (CSA). The enhanced Cuckoo search-based
(ECSBCP) routing protocol is discussed in this paper as a WSN routing mechanism.

In a sensor network, where each node consumes some amount of power with
each transmission over the network, energy competence is the most important attri-
bute. Energy efficiency is required to extend the life of the systems [69]. We shall
flow in the course to improve the network life in this document. In addition, on the
basis of Cuckoo search, routing can be established to optimize networks in this
study. Changes to the PEGASIS (power-efficient gathering in sensor information
system) protocol are also made with the help of a fuzzy system. This work is being
done to improve network performance as well as network longevity. The goal of the
work presented here is to propose an energy-efficient sensor network routing scheme
that allows for successful communication without increasing network congestion.
Based on the energy analysis, load analysis, and delay analysis, we designed oppor-
tunistic routing to discover the most efficient path.

Hosivandi et al. [70] proposed that the limiting of energy sources, which impact
the network’s lifetime openly, is a significant task in wireless sensor networks.
Clustering is a technique for extending the life of a network. Nature-inspired clus-
tering approaches have recently caught the interest of the research community. In
this research, we present three Cuckoo algorithm versions in which the power of
path length is considered a critical factor in cluster head selection. To avoid cluster
heads from quickly dissipating their power, the role of cluster head should be dis-
tributed across many nodes. As a result, the suggested methods try to avoid selecting
unique nodes as cluster heads as frequently as possible. Furthermore, the problem
of not paying attention to the residual energy of sensor nodes during the experimen-
tal clustering section of the well-known LEACH algorithm is handled. The pro-
posed algorithms outperform the LEACH algorithm in terms of energy usage and
network life span, according to simulation results.

Das et al. [71] explained that the egg-laying radius of the Cuckoo search set of
rules is used to construct a cluster on these research paintings, after which the opti-
mum node is sought, which is mostly based on a multi-objective genetic set of rules
with pareto ranking, so that the information may be passed to the sink. The overall
performance metrics parameters, one of which is the maximizing of network life
and the other is the minimization of latency, are the primary focus. When it comes
to maximizing the network lifetime parameter, overlapped goal sensing by way of
multiple sensors is a waste of energy because the same project may be completed
with just one sensor. The series set cover method is used to overcome this problem.
The sleep-wake scheduling technique can be used to reduce the delay parameter;
however, huge delays are provided since the transmitting node wants to see its next-
hop relay node awaken. These delays can be avoided by employing any forged-
based packet forwarding mechanism, in which each node sends a packet to the first
neighboring node to wake up among a group of prospective nodes. The expected
packet-shipping delays from the sensor nodes to the sink node are minimized using

N. Sharma and V. Gupta

123

this any cast forward technique. The proposed work would provide power-assisted
routing with the goal of increasing grid life, packet loss ratio, and system through-
put. The suggested technique was compared to the LEACH algorithm in
MATLAB. The findings reveal that our suggested approach outperforms the compe-
tition in terms of network lifetime, packet loss, and throughput.

Adnan et al. [72] discussed that WSNs are defined by an insufficient amount of
electricity delivered to them. As a result, improving an energy green protocol can
have a major impact on the community’s life span. Verbal exchange is typically the
most energy-intensive task that nodes do, and node strength is the principal con-
straint. A solution could be a good cluster association. Despite the fact that most
fulfilling clustering in wireless sensor networks is an NP-hard issue, bio-stimulated
meta-heuristic methodologies and strategies are currently extremely popular for
solving it. The unusual bio-mimetic Cuckoo search algorithm is used in this paper
to provide a centralized power-conscious clustering solution for wireless sensor net-
works. The cost was calculated with the goal of enhancing network duration while
minimizing intra-cluster distance. The proposed algorithm’s overall performance is
compared to well-known centralized and decentralized clustering protocols.
Simulation results show that the offered solutions can extend the lifetime of a net-
work above its competitors.

Chemg et al. [73] explained that the growing popularity of WSN programmers
necessitates localization. With the goal of extending the lifetime of the energy-
constrained sensor nodes and improving the localization implementation, lowering
the computational difficulty, communication overhead in WSN localization is par-
ticularly significant. For node localization, this study suggests using the Cuckoo
search (CS) algorithm. This strategy, which is mostly focused on changes in step
length, allows the population to quickly obtain global top-quality responses, and the
fitness of each answer is used to build mutation opportunity for avoiding home-
grown convergence. Furthermore, the method limits the population to the defined
range in order to reduce energy waste caused by irrelevant searches. Extensive tests
were conducted to examine the effects of parameters such as anchor density, node
density, and verbal exchange range on the proposed algorithm in terms of average
localization mistakes and achievement ratio. In order to determine the ratio, a com-
parison examination was also performed. When compared to the standard CS algo-
rithm and the particle swarm optimization (PSO) algorithm, experimental results
show that the suggested CS algorithm not only boosts convergence rate but also
reduces average localization faults.

Kumar et al. [74] discussed that the popularity of wireless sensor networks
(WSNs) can be attributed to their ability to manage data with minimal human par-
ticipation. A large number of sensor nodes are powered by batteries, which are one
of the main reasons why energy efficiency is so important in these networks. In light
of this, we can observe that the clustering protocol has outperformed the routing
protocols and has also shown to be cost-effective. As a result, in comparison to the
basic LEACH protocol, this research strongly suggests an innovative clustering
technique based on the progeny parasitism of a few cuckoo bird species, which
contributes to the increase in the span of these networks. The simulation findings

A Survey on Applications, Challenges, and Meta-Heuristic-Based Solutions in Wireless…

124

speak for themselves, demonstrating that by incorporating bio-inspired computa-
tions into pre-existing protocol designs, network efficiency may be improved
significantly.

7 � Metaheuristic on WSN Three Major Challenges

As discussed in Sect. 3, there are a number of WSN challenges to work on. This
section provides an overview in a tabular manner for three major challenges of
WSN, namely, energy efficiency, localization, and routing. Table 2 depicts the short
literature survey on energy efficiency problem of WSN. Table 3 depicts the short
survey table on localization in WSN using metaheuristic. Table 4 shows how rout-
ing efficiency can be improved in WSN using metaheuristic (Table 5).

8 � Statistical Analysis

MATLAB 2020 was used, and WSN was created to see how sensor nodes are cre-
ated, and their linking was analyzed. It was also seen that how all parameters can
affect the WSN and how meta-heuristic algorithms can be applied. There are a num-
ber of metaheuristic algorithms, but for the analysis purpose, only tabu search algo-
rithm is used. Results are shown in the figures mentioned below. Figure 6 shows the
base network. Figures 7 and 8 show the distance to zero and distance to previous
nodes, respectively. Figure 9 shows the tabu search implementation on WSN.

Table 2  Literature survey on energy efficiency problem of WSN

S.
no. Authors name

Publication
year Solution provided

[17] Hoang et al. 2010 Harmony search algorithm is used
[18] Khalil et al. 2011 EAERP has been proposed with the formulation of the

fitness function (ϕEAERP)
[19] Kil-Woong Jang 2012 Channel scheduling algorithm used for minimizing

energy consumption
[20] Hoang et al. 2014 Harmony search algorithms extension implemented
[21] Pulido et al. 2014 Multi-objective meta-heuristic
[22] Jayaprakasam

et al.
2014 Meta-heuristic algorithm analysis

[23] Jayaprakasam
et al.

2015 The algorithm named PSOGSA-E had been proposed

[24] Krishna et al. 2015 MH-EESDA protocol for formation of the secure
clusters

[25] ABBA ARI et al. 2016 Artificial bee colony optimization is used
[26] Mirjalilia et al. 2016 Multi-objective grey wolf optimization was used to

N. Sharma and V. Gupta

125

Table 3  Literature survey on localization problem of WSN

S.
no. Authors name

Publication
year Solution provided

[75] Hada et al. 2009 Life span method (LSM) is used here
[24] Jacob et al. 2009 Tabu search and PSO used to improve

localization in WSN
[76] Habib et al. 2010 Coverage restoration scheme is used
[29] Dhivya et al. 2011 Cuckoo search optimization is applied
[32] Fidanova et al. 2014 Solution of telecommunication problem using

multi-objective ant colony optimization
[31] Sonia Goyal and

Manjeet Singh Patterh
2015 Bat algorithm for node localization

[30] Gupta et al. 2015 Genetic-based algorithm used to solve the
problem

[77] Arsic et al. 2016 Firework algorithm is applied
[78] Kaur et al. 2017 The FPA-based node localization algorithm is

used

Table 4  Literature survey on routing efficiency of WSN

S.
no Authors name

Publication
year Solution provided

[79] Srinath et al. 2007 Cluster base routing protocols
[80] Chen et al. 2009 Inter-cluster forwarding concept
[27] Enan A. Khalil

et al.
2011 Dynamic cluster formation in WSN

[39] Okdem et al. 2011 Artificial bee colony algorithm is used
[40] Saleem et al. 2011 Swarm intelligence is used
[81] Yu et al. 2012 Cluster-based routing for WSNs nonuniform node

distribution
[82] Aslam et al. 2012 Energy-efficient hierarchical routing

Table 5  List of meta-heuristic algorithms applied on these major challenges

WSN issue
focused

Meta-heuristic algorithms that were used to optimize the issue

Localisation Genetic algorithm, scatter search, tab search, differential evolution, ABC, honey
bee mating, firefly algorithm, TLBO, ABC, league championship algorithm,
gravitational search algorithm, Cuckoo search, Krill herd algorithm, artificial
intelligence algorithm, heterogeneous distributed bee algorithm

Routing Cuckoo algorithm, bat algorithm, killer whale algorithm, hydrological cycle
algorithm, mass balance algorithm, Harris hawk optimization, colliding bodies
optimization, duelist algorithm, intelligent water drop algorithm, bee’s
algorithm, glowworm swarm optimization, PSO, ACO

Energy
efficiency

Genetic programming, simulated annealing, ACO, reactive search optimization,
intelligent water drop algorithm, honey bee mating algorithm, bat algorithm,
galaxy-based search algorithm, imperialist based algorithm, rain water
algorithm, heterogeneous based bee algorithm, flower pollination algorithm

A Survey on Applications, Challenges, and Meta-Heuristic-Based Solutions in Wireless…

126

Fig. 6  Base WSN network

Fig. 7  Distance to zero

9 � Conclusion

The survey tries to present the challenges in WSN and the role of meta-heuristic in
this field. WSN evolution is rapid, and it is also showing rapid development toward
infrastructure deployment and fields like agriculture and health monitoring. A lot of
work still can be done in this field for its further enhancement. The fields like IoT
and monitoring of remote data cannot be thought of without the WSN. WSN is the
base for such fields, and hence, researchers can focus on these fields also by adding
features of new upcoming techniques to improve them more. The survey in the
paper also shows that the use of meta-heuristic is not limited to WSN and the use of

N. Sharma and V. Gupta

127

Fig. 8  Distance to
previous nodes

Fig. 9  Tabu search
implementation on the
implemented WSN for
optimization

meta-heuristic in automated software testing is exemplary. In the field of software
testing, optimization of test cases and increasing usability are a few tasks which can
be optimized with the help of meta-heuristic.

In the future, new algorithms like Newton meta-heuristic algorithms and grey
werewolf optimization can be implemented in WSN and automated software testing
for optimization.

A Survey on Applications, Challenges, and Meta-Heuristic-Based Solutions in Wireless…

128

References

1.	Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., & Pister, K. (2000). System architecture
directions for networked sensors. ASPLOS.

2.	Culler, D. E., & Hong, W. (2004). Wireless sensor networks. Communication of the ACM,
47(6), 30–33.

3.	Akyildiz, I. F., Su, W. L., Yogesh, S., & Erdal, C. (2002). A survey on sensor networks. IEEE
Communication Magazine, 40(8), 102–114.

4.	Hoang, D. C., Yadav, P., Kumar, R., & Panda, S. K. (2014). Real-time implementation of a
harmony search algorithm-based clustering protocol for energy-efficient wireless sensor net-
works. IEEE Transactions on Industrial Informatics, 10(1).

5.	 Jindal, V. (2018). History and architecture of wireless sensor networks for ubiquitous com-
puting. International Journal of Advanced Research in Computer Engineering & Technology
(IJARCET), 7(2), ISSN:2278-1323.

6.	Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer
Network, 52(12), 2292–2330.

7.	Rawat, P., Singh, K. D., Chaouchi, H., & Bonnin, J. M. (2014). Wireless sensor networks: A sur-
vey on recent developments and potential synergies. Journal of Supercomputing, 68(1), 1–48.

8.	Akyildiz, I. F., Melodia, T., & Chowdhury, K. (2007). A survey on wireless multimedia sensor
networks. Computer Network, 51(4), 921–960.

9.	Akyildiz, I. F., Pompili, D., & Melodia, T. (2004). Challenges for efficient communication in
underwater acoustic sensor networks. ACM SIGBED Review, 1(2).

10.	Heidemann, J., Li, Y., Syed, A., Wills, J., & Ye, W. (2006). Underwater sensor networking:
Research challenges and potential applications. Conference of IEEE Wireless Communications
and Networking.

11.	Akyildiz, I. F., & Stuntebeck, E. (2006). Wireless underground sensor networks: research chal-
lenges. Ad Hoc Network, 4(6), 669–686.

12.	Li, M., & Liu, Y. (2007). Underground structure monitoring with wireless sensor networks.
In 6th international conference on information processing in sensor networks (p. 78). ACM.

13.	Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor
networks. IEEE Communication Magazine, 40(8), 102–114.

14.	Simon, G., Maróti, M., Lédeczi, Á., Balogh, G., Kusy, B., Nádas, A., Pap, G., Sallai, J., &
Frampton, K. (2004). Sensor network-based counter sniper system. In 2nd International con-
ference on embedded networked sensor systems (pp. 1–12). ACM.

15.	Huang, J., Amjad, S., & Mishra, S. (2005). CenWits: A sensor-based loosely coupled search
and rescue system using witnesses. In Proceedings of the 3rd international conference on
embedded networked sensor systems (p. 191). ACM.

16.	Minaie, A., Sanati-Mehrizy, A., Sanati-Mehrizy, P., & Sanati-Mehrizy, R. (2013). Application
of wireless sensor networks in health care system. In ASES conference and exposition.

17.	Booker, L. B., Goldberg, D. E., & Holland, J. H. (1989). Classifier systems and genetic algo-
rithms. In Machine learning: Paradigms and methods (pp. 235–282). MIT Press/Elsevier.

18.	Kennedy, & Eberhart, R. C. (1995). Particle swarm optimization. In Procurement IEEE inter-
national conference of neural networks (Vol. 4, pp. 1942–1948).

19.	Dorigo, M., & Caro, G. D. (1999). Ant colony optimization: A new meta-heuristic. In
Proceedings of the congress on evolutionary computation (pp. 1470–1477).

20.	Haldenbilen, S., Ozan, C., & Baskan, O. (2013). An ant colony optimization algorithm for area
traffic control. INTECH Open Access Publisher.

21.	Karaboga, D., & Basturk, B. (2007). An energy efficient routing protocol using ABC to
increase survivability of WSN function optimization: Artificial bee colony (ABC) algorithm.
Journal of Global Optimization, 39, 459–471.

22.	Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In Nature inspired coopera-
tive strategies for optimization (Vol. 284, pp. 65–74). SCI.

N. Sharma and V. Gupta

129

23.	Hoang, D., Yadav, P., Kumar, R., & Panda, S. (2014). Real-time implementation of a harmony
search algorithm-based clustering protocol for energy efficient wireless sensor networks. IEEE
Transaction Industries Informatics, 10(1), 774–783.

24.	Ari, A. A. A., Gueroui, A., Yenke, B. O., & Labraoui, N. (2016). Energy efficient clustering
algorithm for Wireless Sensor Networks using the ABC metaheuristic. In Computer commu-
nication and informatics ICCCI international conference on Coimbatore, India.

25.	Jang, K. W. (2012). Meta-heuristic algorithms for channel scheduling problem in wireless sen-
sor networks. International Journal of Communication Systems, 25(4), 427–446.

26.	Hoang, D. C., Yadav, P., Kumar, R., & Panda, S. K. (2010). A robust harmony search algorithm
based clustering protocol for wireless sensor networks. In IEEE international conference on
communications workshops, Singapore (pp. 1–5).

27.	Khalil, E. A., & Attea, B. A. (2011). Energy-aware evolutionary routing protocol for dynamic
clustering of wireless sensor networks. Swarm Evolution Computing, 1, 195–203.

28.	Gopakumar, A., & Jacob, L. (2008). Performance of some metaheuristic algorithms for
localization in wireless sensor networks. International Journal of Network Management, 19,
355–373.

29.	Dhivya, M., & Sundarambal, M. (2011). Cuckoo search for data gathering in wireless sensor
networks. International Journal of Mobile Communication, 9, 642–656.

30.	S. K. Gupta, P. Kuila and P. K. Jana, "Genetic algorithm approach for k -coverage and m -con-
nected node placement in target based wireless sensor networks.", Computers and Electrical
Engineering, 2015.

31.	Goyal, S., & Patterh, M. S. (2016). Modified bat algorithm for localization of wireless sensor
network. Wireless Personal Communications, 862, 657–670.

32.	Fidanova, S., Marinov, P., & Paparzycki, M. (2014). Multi-objective ACO algorithm for WSN
layout: Performance according to number of ants. International Journal of Metaheuristics, 3,
149–161.

33.	Mann, P. S., & Singh, S. (2016). Artificial bee colony metaheuristic for energy-efficient clus-
tering and routing in wireless sensor networks. Soft Computing, 21, 1–14.

34.	Mekonnen, M. T., & Rao, N. K. (2017). Cluster optimization based on metaheuristic algo-
rithms in wireless sensor networks. Wireless Personal Communications, 97(2), 2633–2647.

35.	Guleria, K., & Verma, A. K. (2019). Cluster optimization based on metaheuristic algorithms in
wireless sensor networks. Wireless Personal Communication, 105(3), 891–911.

36.	Arora, S., & Singh, S. (2017). Node localization in wireless sensor networks using butterfly
optimization algorithm. Arabian Journal for Science and Engineering, 42, 3325–3335.

37.	Masood, M., Fouad, M., & Glesk, I. (2017). Proposing bat inspired heuristic algorithm for the
optimization of GMPLS networks. In Proceedings of 25th TELFOR.

38.	Mirjalili, S., Saremi, S., Mirjalili, S. M., & Coelho, L. D. S. (2016). Multi-objective grey wolf
optimizer: A novel algorithm for multi-criterion optimization. Expert System Application, 47,
106–119.

39.	Okdem, S., Karaboga, D., & Ozturk, C. (2011). An application of wireless sensor network
routing based on artificial bee colony algorithm. IEEE Congress of Evolution Computing,
326–330.

40.	Saleem, M., Di Caro, G. A., & Farooq, M. (2011). Swarm intelligence based routing protocol
for wireless sensor networks: Survey and future directions. Information Sciences, 181(20),
4597–4624.

41.	Gupta, S. K., Kuila, P., & Jana, P. K. (2015). Genetic algorithm approach for k -coverage and
m -connected node placement in target based wireless sensor networks. Computation Electrical
Engineering.

42.	Naik, C., & Shetty, D. P. (2018). A novel meta-heuristic differential evolution algorithm for
optimal target coverage in wireless sensor networks. In International conference on innova-
tions in bio-inspired computing and applications. Springer.

43.	Bahri, O., Amor, N. B., & Talbi, E.-G. (2018). Possibilistic framework for multi-objective opti-
mization under uncertainty. In Recent developments in metaheuristics (pp. 17–42). Springer.

A Survey on Applications, Challenges, and Meta-Heuristic-Based Solutions in Wireless…

130

44.	Mood, S. E., & Javidi, M. M. (2019). Energy-efficient clustering method for wireless sensor
networks using modified gravitational search algorithm. Evolving Systems, 1–13.

45.	Agarwal, A., Khari, M., & Singh, R. (2021). Detection of DDOS attack using deep learning
model in cloud storage application. Wireless Personal Communications, 1–21.

46.	Saini, R., & Khari, M. (2011). Defining malicious behavior of a node and its defensive tech-
niques in ad hoc networks. International Journal of Smart Sensors and Ad Hoc Networks,
1(1), 17–20.

47.	Vimal, S., Khari, M., Crespo, R. G., Kalaivani, L., Dey, N., & Kaliappan, M. (2020). Energy
enhancement using multiobjective Ant colony optimization with Double Q learning algorithm
for IoT based cognitive radio networks. Computer Communications, 154, 481–490.

48.	Díaz, E., Tuya, J., & Blanco, R. (2003). Automated software testing using a metaheuristic
technique based on Tabu search. In Proceedings of 18th IEEE international conference on
automated software engineering (pp. 310–313). IEEE.

49.	Feldt, R., & Poulding, S. (2013). Finding test data with specific properties via metaheuris-
tic search. In 2013 IEEE 24th international symposium on software reliability engineering
(ISSRE) (pp. 350–359). IEEE.

50.	Haraty, R. A., Mansour, N., & Zeitunlian, H. (2018). Metaheuristic algorithm for state-based
software testing. Applied Artificial Intelligence, 32(2), 197–213.

51.	de Freitas, F. G., Maia, C. L. B., de Campos, G. A. L., & de Souza, J. T. (2010). Optimization
in software testing using metaheuristics. Revista de Sistemas de Informação da FSMA, 5, 3–13.

52.	Ricca, F., & Tonella, P. (2001). Analysis and testing of web applications. In Proceedings of the
23rd international conference on software engineering. ICSE (pp. 25–34). IEEE.

53.	Marchetto, A., Tonella, P., & Ricca, F. (2008). State-based testing of Ajax web applica-
tions. In 2008 1st international conference on software testing, verification, and validation
(pp. 121–130). IEEE.

54.	Soujanya, G. L., & Chandra Mouli, P. V. S. (2017). Energy efficient cluster head selection
using ABC with DCA in WSN. International Journal of Innovative Research in Computer and
Communication Engineering, 5(4).

55.	Ajayan, A. R., & Balaji, S. (2013). A modified ABC algorithm & its application to wire-
less sensor network dynamic deployment. IOSR Journal of Electronics and Communication
Engineering, 4(6).

56.	Pawandeep, M., Garg, M., & Jain, N. (2016). An energy efficient routing protocol using ABC
to increase survivability of WSN. International Journal of Computer Applications (0975 –
8887), 143(2).

57.	Mann, P. S., & Singh, S. (2015). Improved metaheuristic-based energy-efficient clustering pro-
tocol with optimal base station location in wireless sensor networks. Soft Computing. https://
doi.org/10.1007/s00500-017-2815-0

58.	Okdem, S., Karaboga, D., & Ozturk, C. (2011). An application of wireless sensor network
routing based on artificial Bee colony algorithm. 978-1-4244-7835-4/11/$26.00 ©2011. IEEE.

59.	Nayyar, A., & Singh, R. (2017). Ant colony optimization (ACO) based routing protocols for
wireless sensor networks (WSN): A survey. International Journal of Advanced Computer
Science and Applications (IJACSA), 8(2).

60.	Mualuko, V. M., Kihato, P. K., & Oduol, V. (2017). Routing optimization for wireless sensor
networks using fuzzy Ant colony. International Journal of Applied Engineering Research,
12(21), 11606–11613. ISSN:0973-4562.

61.	Nguyen, T., Pan, J. S., & Dao, T. K. (2019). A compact Bat algorithm for unequal clustering
in wireless sensor networks. Applied Sciences, 9(1973). https://doi.org/10.3390/app9101973

62.	Ng, C. K., Ho Wu, C., Hung Ip, W., & Yung, K. L. (2018). Smart BAT algorithm for wireless
sensor network deployment in 3-D environment, 1089-7798. IEEE. Personal use is permitted,
but republication.

63.	Kavita, & Kashyap, R. C. (2016). Improved BAT algorithm based clustering in WSN. IJEDR,
4(4), ISSN:2321-9939.

64.	Goyal, S., & Patterh, M. S. (2013). Wireless sensor network localization based on BAT algo-
rithm. International Journal of Emerging Technologies in Computational and Applied Sciences
(IJETCAS).

N. Sharma and V. Gupta

https://doi.org/10.1007/s00500-017-2815-0
https://doi.org/10.1007/s00500-017-2815-0
https://doi.org/10.3390/app9101973

131

65.	Mihoubi, M., Rahmoun, A., Lorenz, P., & Lasla, N. (2017). An effective Bat algorithm for
node localization in distributed wireless sensor network. Security and Privacy, 1, e7. https://
doi.org/10.1001/spy2.7

66.	Mohsin Masood, S., Fouad, M. M., & Glesk, I. (2017). Proposing Bat inspired heuristic algo-
rithm for the optimization of GMPLS networks. In 25th telecommunications forum TELFOR,
Serbia, Belgrade.

67.	Rathour, S. K., & Khan, P. R. (2016). An efficient routing algorithm using Bat algorithm
in WSN. International Journal of Advanced Research in Computer Science and Software
Engineering, 6(12).

68.	Dermi, M., Barmati, M.E., & Youcefi, H. (2018). Enhanced Cuckoo search-based clustering
protocol for wireless sensor networks. 978-1-5386-4238-2/18$31.00. IEEE.

69.	Bhatti, G. K., & Raina, J. P. S. (2014). Cuckoo based energy effective routing in wireless sensor
network. International Journal of Computer Science and Communication Engineering, 3(1).

70.	Ghiasiana, A., & Hosivandi, M. (2017). Cuckoo based clustering algorithm for wireless sensor
network. International Journal of Computer (IJC), 27(1), 146–158.

71.	Das, S., Barani, S., Wagh, S., & Sonavane, S. S. (2017). Optimal clustering and routing for
wireless sensor network based on cuckoo search. International Journal of Advanced Smart
Sensor Network Systems (IJASSN), 7(2/3).

72.	Md. Akhtaruzzaman Adnan, Razzaque, M. A., Md. Anowarul Abedin, Salim Reza, S. M.,
& Hussein, M. R. (2016). A novel Cuckoo search based clustering algorithm for wireless
sensor networks. Springer. Sulaiman, H. A., et al. (Eds.), Advanced computer and commu-
nication engineering technology (Lecture Notes in Electrical Engineering 362). https://doi.
org/10.1007/978-3-319-24584-3_53

73.	Cheng, J., & Xia, L. (2016). An effective Cuckoo search algorithm for node localization in
wireless sensor network. Sensors, 16, 1390.

74.	Sandeep Kumar, E., Mohanraj, G. P., & Goudar, R. R. (2014). Clustering approach for wireless
sensor networks based on cuckoo search strategy. International Journal of Advanced Research
in Computer and Communication Engineering, 3(6).

75.	Hada, A. K. I. O., & Tsuchiya, R. Y. U. J. I. (2009). A metaheuristic algorithm for wireless
sensor network design in railway structures. In 2009 international conference on intelligent
sensors, sensor networks and information processing (ISSNIP) (pp. 231–236). IEEE.

76.	Habib, S. J., & Marimuthu, P. N. (2010). A coverage restoration scheme for wireless sensor
networks within simulated annealing. In Seventh international conference on wireless and
optical communications networks-(WOCN) (pp. 1–5). IEEE.

77.	Arsic, A., Tuba, M., & Jordanski, M. (2016). Fireworks algorithm applied to wireless sen-
sor networks localization problem. IEEE Congress on Evolutionary Computation (CEC),
4038–4044.

78.	Kaur, R., & Arora, S. (2017). Nature inspired range based wireless sensor node localization
algorithms. International Journal of Interactive Multimedia & Artificial Intelligence, 4(6).

79.	Srinath, R., Reddy, A. V., & Srinivasan, R. (2007). Ac: Cluster based secure routing protocol
for wsn. In International conference on networking and services (ICNS’07) (pp. 45–45). IEEE.

80.	Chen, G., Li, C., Ye, M., & Wu, J. (2009). An unequal cluster-based routing protocol in wire-
less sensor networks. Wireless Networks, 15(2), 193–207.

81.	Xiu-li, R., Hong-wei, L., & Yu, W. (2008). Multipath routing based on Ant colony system
in wireless sensor networks. In International conference on computer science and software
engineering.

82.	Aslam, M., Javaid, N., Rahim, A., Nazir, U., Bibi, A., & Khan, Z. A. (2012, June). Survey
of extended LEACH-based clustering routing protocols for wireless sensor networks.
In 2012 IEEE 14th international conference on high performance computing and com-
munication & 2012 IEEE 9th international conference on embedded software and systems
(pp. 1232–1238). IEEE.

A Survey on Applications, Challenges, and Meta-Heuristic-Based Solutions in Wireless…

https://doi.org/10.1001/spy2.7
https://doi.org/10.1001/spy2.7
https://doi.org/10.1007/978-3-319-24584-3_53
https://doi.org/10.1007/978-3-319-24584-3_53

133

myCHIP-8 Emulator: An Innovative
Software Testing Strategy for Playing
Online Games in Many Platforms

Sushree Bibhuprada B. Priyadarshini, Amrut Mahapatra,
Sachi Nandan Mohanty, Anish Nayak, Jyoti Prakash Jena,
and Saurav Kumar Singh Samanta

1 � Introduction to CHIP-8 and Metaheuristics

CHIP-8 is an interpreted programming language. It was developed in the 1970s and
became popular since it helped programmers to easily program video games for
other machines using metaheuristic optimization solution. The CHIP-8 virtual
machine has 4KB (4096 bytes) of memory. The lower 512 bytes of memory, that is,
from 0x000 to 0x200, were historically used by the interpreter itself. In our research,
where the interpreter is running outside virtual machine’s memory space, we will
use this area to store the fonts (from 0x00). The programs will be loaded at location
0x200. The machine has 16 8-bit data registers named from V0 to VF out of which
15 (V0 – VE) can be used as general purpose registers (GPRs) for arithmetic and
logical operations [1, 2].

We have developed myCHIP-8 emulator employing metaheuristic strategy that
moves toward the solution of playing online games through a subset of solutions
while exploring upcoming steps [3, 4].The 16th register (VF) serves as an “overflow
flag” and is SET when an addition results are in an overflow. In the case of subtrac-
tion, the register VF is SET when there is no carry needed. The VF register is also
SET when the draw instruction results in a pixel collision. There also exists an index
register (I) which is used in the case of memory operations. CHIP-8 instructions or
“opcodes” are 16-bits in length [1, 2].

A special register called as program counter (PC) is employed that keeps track of
which instruction is to be executed next. Certain instructions like the JUMP

S. B. B. Priyadarshini · A. Mahapatra (*) · A. Nayak · J. P. Jena · S. K. S. Samanta
Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, Odisha, India

S. N. Mohanty
College of Engineering, Pune, India

© Springer Nature Switzerland AG 2022
M. Khari et al. (eds.), Optimization of Automated Software Testing Using
Meta-Heuristic Techniques, EAI/Springer Innovations in Communication and
Computing, https://doi.org/10.1007/978-3-031-07297-0_9

https://doi.org/10.1007/978-3-031-07297-0_9

134

instruction (JP addr) can change PC. The stack on the CHIP-8 virtual machine is
used to store return addresses at the time when the subroutines are called.

Our implementation is capable of storing up to 16 return addresses. We will
maintain a stack pointer (SP) that will always point to the top of the stack. Such a
stack pointer is helpful when we want to return from a subroutine. The developed
emulator in our approach is basically a metaheuristic optimization approach where
high-level procedure is framed to attain good solution toward playing online game
[3, 4]. Basically, combinatorial optimization involving various registers is employed
in our study.

1.1 � Motivation

As architectures grow old, the programs written for them get forgotten. This is
mostly because people no longer have access to those older machines. This is some-
what the case for the CHIP-8 architecture too. We wanted to preserve the programs
that were written for the CHIP-8 architecture and hence decided to make a CHIP-8
emulator. Other than that, CHIP-8 is also an open-source project which means we
could code our instruction and set them into the processor and remove the unneces-
sary instructions as per our requisites. This has been a huge advantage that open-
source architectures are flexible in terms of instruction sets [5].

This is cost-effective as we don’t need to be dependent upon specific vendors for
their instruction set architectures such as x86, arm Vx, etc., which requires us to
have the instructions that we don’t need. Modern architectures such as RISC-V are
based on principles as like as CHIP-8 in terms of instruction flexibility. CHIP-8
provides an easy way to learn the fundamentals of emulating a CPU. This is both
because the instruction set is quite small and the registers are only 8-bits wide.

1.2 � CHIP-8 as a Metaheuristic Approach

CHIP-8 is an 8-bit machine that reads the instructions stored in a program into its
RAM. It then proceeds to decode the instructions and executes them sequentially
with optimality, thereby following a metaheuristic strategy starting from attaining
goal through sub-solution design [3, 6, 7]. We have implemented the CHIP-8
machine using C programming language employing metaheuristic strategy. The
graphics are handled by using the Simple DirectMedia Layer (SDL2). Our imple-
mentation has a “delay timer” which also existed in the original CHIP-8 implemen-
tation [3, 4].

When the delay timer is SET, it counts down to zero. CHIP-8 [8] has a 16-key
input device (0 – F). Our implementation will map this input configuration to the
left side of the keyboard. CHIP-8 has 35 instructions or “opcodes.” There has been

S. B. B. Priyadarshini et al.

135

much debate on whether to employ the “classic switch-case instruction decoding”
or “jump tables.” Whatever the case, it becomes important to classify the opcodes
into separate groups. We can classify the opcodes into five groups according to their
first byte:

•	 Unique: The first byte of these opcodes is unique. For example, 1nnn (JP addr)
and 2nnn (CALL addr).

•	 Begin with “0”: The first byte of these opcodes is “0.| For example, 00E0 (CLS)
and 00EE (RET).

•	 Begin with “8”: The first byte of these opcodes is “8.” For example, 8xy0 (LD
Vx, Vy) and 8xy1 (OR Vx, Vy).

•	 Begin with “E”: The first byte of these opcodes is “E.” For example, ExA1
(SKNP Vx) and Ex9E (SKP Vx).

•	 Begin with “F”: The first byte of these opcodes is “F.” For example, Fx15 (LD
DT, Vx) and Fx0A (LD Vx, K).

Our implementation decodes the instructions using function pointers (or jump
tables) using optimization strategy. In contrast to the classic switch-case instruction
decoding, this simplifies the design since now, we don’t have to deal with hundreds
of “case” statements. CHIP-8 can display hexadecimal digits (0 – F) as sprites on
the 64 × 32 screen [2, 3].

Each sprite is guaranteed to be 5 bytes long. The bits which are SET draw out a
pattern that corresponds to the particular character that is to be drawn.

Let us take an example of the character “4.”
The binary representation for the character “4” in CHIP-8 is

1001000010010000
11110000
00010000
00010000

The bits which are set (i.e., 1) draw out a pattern similar to that of character “4.”
The hexadecimal representation of this binary is as follows:

0x90
0x90
0xF0
0x10
0x10

This is the exact hexadecimal representation that is to be stored in our font array.
Since each character is guaranteed to be 5 bytes long and we need to store 16 char-
acters, our font array has to be of 80 bytes long. The font array representation is
portrayed in Fig. 1. Thus, the systematic optimization-oriented procedure employed
asserts the metaheuristic feature of the proposed emulator [8, 9].

myCHIP-8 Emulator: An Innovative Software Testing Strategy for Playing Online…

136

Fig. 1  Font array representation

2 � Related Work

The technical reference for the instructions used in our project comes from the work
of Thomas P. Greene. Thomas hosts a website. His technical reference to the CHIP-8
instruction set is named “Cowgod’s Chip-8 Technical Reference” and is probably
the most popular technical reference for the CHIP-8 architecture. The reference has
been immensely helpful to us. Although some regard the reference as to be some-
what faulty, it is to be noted that almost all of the available programs for the CHIP-8
architecture are programmed according to this reference. M. Laurence discussed
how to write an emulator. Similarly, Jones Nigel (1999) discussed the embedded
system programming in details. Likewise, I. Mizutani and J. Mitsugi (2016) dis-
cussed a multicode and portable RFID tag events emulator for RFID information
system [1, 4].

The implementation idea for the Dxyn (DRW Vx, Vy, nibble) instruction comes
from Laurence Muller. Laurence maintains a website. Laurence does an excellent
job of explaining the concept of sprites and how the VF register can be used to
detect collisions. Further, the website also presented a beautiful method of iterating
over a byte bit-by-bit by using a bitwise AND operation [10].

S. B. B. Priyadarshini et al.

137

Our implementation also benefited immensely from the advice of not updating
the screen after every cycle and instead maintaining a draw flag which makes sure
that the screen only gets updated after a draw or a clear screen instruction, that is,
the only instructions that are capable of drawing on the screen.

The idea of implementing jump tables instead of huge switch-case statements for
decoding opcodes comes from Nigel Jones. The article we referred to was posted on
the website. Nigel first posted this article in the May 1999 issue of Embedded
Systems Programming. In this article, Nigel goes over the performance benefits
from using jump tables over switch-case statements. The article mentions that while
the compiler may optimize the switch-case statements into jump tables; however, it
is not always the case. It mentions that a programmer cannot reliably predict when
a switch-case gets optimized into jump tables [5, 6].

It also provides security methods to apply when implementing jump tables by
using the keyword static in our project which would make sure that our table would
not be changed by a rogue outsider. This article helped us a lot in implementing
jump tables by means of function pointers in our project. It is to be noted that jump
tables are preferred over switch-case statements in emulators/interpreters that are
far more complex in implementation such as the NES, the SNES, etc. The concept
of jump tables proved to be an important lesson for us.

3 � Proposed Approach Employing Software Testing (ST)

In this project, we have implemented a CHIP-8 emulator in the C programming
language along with all its instructions. As a result, all the games that are available
for the CHIP-8 architecture can be run on our emulator. We have developed the
emulator while considering all the attributes like reliability, scalability, portability,
and reusability while playing the online games [11, 18–21].

3.1 � mychip-8

The emulator begins by calling the reset() function which resets all the registers
(including memory) to zero, seeds the pseudo-random number generator, and loads
the fonts at memory location 0x00. It also sets the program counter (PC) to memory
location 0x200 at which the to-be-executed program will be loaded. It then proceeds
to load the ROM file by calling the loadROM() function. Then it proceeds to create
a window via the SDL library. From then, it repeatedly calls the cycle() function
until the “Escape” key is pressed, in which case the program exits [2, 12].

The cycle() function is the heart of the emulator and is implemented in the classic
“Fetch, Decode and Execute” way. It fetches 2 bytes from the emulator’s memory
(of the program) and joins them together so as to form an “opcode.” Then it incre-
ments the PC by 2 since 2 bytes have been fetched from the memory. It masks the

myCHIP-8 Emulator: An Innovative Software Testing Strategy for Playing Online…

138

opcode with 0xF000 and logically shifts it right by 12-bits so as to get its first byte
and consults a jump table for deciding which of the five groups (as discussed ear-
lier) it belongs to.

For example, let us consider the opcode “1208”:

Since, we masked 1208 with 0xF000 (and logically shifted it right by 12-bits), we
are left with “1.” Now, this “1” is looked up on the jump table which decides that
the instruction is of the format “1nnn” and calls the SYS_1nnn() function to
execute the opcode “1208.”

However, we can’t do this in case the opcode belongs to the other four groups.
This is because, unlike “1208,” we cannot immediately decide the exact instruction
just by looking at the first byte.

Let us take an example, the opcode “80E0.” Looking at its first byte, we can tell
that it belongs to the group where opcodes begin with “8.” However, we cannot tell
whether the instruction belongs to 8xy0, 8xy1 … or 8xy7 just by looking at its first
byte. In this case, we also need to look at its last byte.

While implementing the draw instruction, we will wrap around any pixels that
are drawn outside the screen. This is in contrast to other available emulators that do
not wrap around the pixels. Also, in the implementation of the CXKK instruction
that generates a pseudo random number, some games such as VBRIX do not handle
the number 32 correctly. Our implementation does not have this limitation
(Figs. 2 and 3).

So, our procedure for decoding an opcode becomes as follows:

	(i)	 Get the first byte (first_byte) of the opcode and call JUMP_TABLE[first_byte]

Our jump table is implemented somewhat like this:

Fig. 2  Entire paddle sprite inside the 64 × 32 display

S. B. B. Priyadarshini et al.

139

Fig. 3  Part of the paddle that goes outside the screen gets wrap around

JUMP_TABLE[first_byte] =

{ JUMP_TABLE_0, SYS_1nnn, SYS_2nnn,
SYS_3xkk,
 SYS_4xkk, SYS_5xy0, SYS_6xkk,
SYS_7xkk,
 JUMP_TABLE_8, SYS_9xy0, SYS_Annn,
SYS_Bnnn,
 SYS_Cxkk, SYS_Dxyn, JUMP_TABLE_E,
JUMP_TABLE_F
};

	(ii)	 If the first_byte is “unique” (i.e., 1, 2, 3, 4, 5, 6, 7, 9, A, B, C, D), then JUMP_
TABLE will call the respective SYS_xxxx() function.

	(iii)	 If the first_byte is “0,” then JUMP_TABLE will call JUMP_TABLE_0() func-
tion which will further look up the opcode on a jump table which will also look
at its last byte to decode it.

	(iv)	 If the first_byte is “8,” then JUMP_TABLE will call JUMP_TABLE_8() func-
tion which will further look up the opcode on a jump table which will also look
at its last byte to decode it.

	(v)	 If the first_byte is “E,” then JUMP_TABLE will call JUMP_TABLE_E() func-
tion which will further look up the opcode on a jump table which will also look
at its last byte to decode it.

	(vi)	 If the first_byte is “F,” then JUMP_TABLE will call JUMP_TABLE_F() func-
tion which will further look up the opcode on a jump table which will look at
its last two bytes to decode it.

The reason for JUMP_TABLE_F() to look at the opcode’s last two bytes instead
of just one is because unlike others (“0,” “8,” “E” grouped), the “F” group has two

myCHIP-8 Emulator: An Innovative Software Testing Strategy for Playing Online…

140

instructions Fx55 and Fx65 that both have their last byte as “5.” Obviously, we can’t
just take the last byte for deciding the exact instruction in this case. Therefore, we
consider the last two bytes.

For “E” and “F” grouped instructions, we have a large amount of indexes in our
jump table that are unfilled. The functions at these indexes, if called, serve to inform
us that an invalid function is being called. So, we decided to have a special func-
tion—SYS_INVAL() that will print out “Invalid opcode” and show which opcode
failed. It’ll then exit [13].

The input handling is done via the SDL2 library which provides a cross-platform
graphic library. CHIP-8’s inputs and its keyboard mapping are as follows:

 KEYPAD KEYBOARD
 1 2 3 C => 1 2 3 4
 4 5 6 D=> Q W E R
 7 8 9 E => A S D F
 A 0 B F => Z X C V

Apart from these keys, the “Esc” (Escape) key can be used at any time to exit the
emulator.

4 � Instructions Used

	(i)	 SYS_0nnn() – SYS addr

It is ignored by our emulator. This instruction was originally used to call machine
language subroutines.

	(ii)	 SYS_00E0() – CLS

This instruction clears the entire 64 × 32 display via a memset() call.

memset(VIDEO, 0, sizeof(VIDEO));

	(iii)	 SYS_00EE() – RET

This instruction is used to return from subroutines. This is generally used at the
end of a subroutine so as to transfer the control back to the position at which the
subroutine was called at.

The program counter is set to the address stored at the top of the stack, and 1 is
subtracted from the stack pointer.

S. B. B. Priyadarshini et al.

141

 PC = STACK[SP];
 SP--;

	(iv)	 SYS_1nnn() – JP addr

This instruction jumps to address nnn. This is similar to an unconditional jump.
This is usually used to repeat parts of the program one or more times. To get the
address, the opcode is masked with 0x0FFF. Then, the program counter is set to that
address [6–8].

 uint16_t address = opcode & 0x0FFFu;
 PC = address;

	(v)	 SYS_2nnn() – Call addr

This instruction is used to call subroutines which are used to execute parts of the
program multiple times. On the COSMAC VIP, since the stack could store up to 12
addresses, 12 subsequent subroutines could be called. In our implementation, 16
subroutines can be subsequently called.

First, the stack pointer is incremented. Then the current value of the program
counter (the point at which you’re supposed to return after the subroutine ends) is
stored onto the top of the stack. To get the address, the opcode is masked with
0x0FFF, and then the program counter is set to the address.

 SP++;
 STACK[SP] = PC;
 uint16_t nnn = (OPCODE & 0x0FFFu);
 PC = nnn;

	(vi)	 SYS_3xkk() – SE Vx, byte

This instruction skips the next instruction (by incrementing the program counter
by 2) if the value of register x is equal to kk (a byte). This is an example of condi-
tional branching; however, it is to be noted that only a single instruction can be
skipped.

To get the x register, the opcode is masked with 0xF00 and shifted right by 8 bits
so as to convert the resultant to a single byte. Then, to get kk (a byte), the opcode is
masked with 0x00FF. Finally, we check if the value at register x is equal to that of
kk (a byte), and if it is, then skip the next instruction.

myCHIP-8 Emulator: An Innovative Software Testing Strategy for Playing Online…

142

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 uint8_t kk = (OPCODE & 0x00FFu);
 if(V[x] == kk)
 PC = PC + 2;

	(vii)	 SYS_4xkk() – SNE Vx, byte

This instruction skips the next instruction (by incrementing the program counter
by 2) if the value of register x is not equal to kk (a byte). This is also an example of
conditional branching, but only a single instruction can be skipped.

To get the x register, the opcode is masked with 0xF00 and shifted right by 8 bits
so as to convert the resultant to a single byte. Then, to get kk (a byte), the opcode is
masked with 0x00FF. Finally, we check if the value at register x is not equal to that
of kk (a byte), and if it is not, then skip the next instruction.

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 uint8_t kk = (OPCODE & 0x00FFu);
 if(V[x] != kk)
 PC = PC + 2;

	(viii)	 SYS_5xy0() – SE Vx, Vy

This instruction skips the next instruction (by incrementing the program counter
by 2) if the value of register x is equal to the value of register y. This is also an
example of conditional branching, but only a single instruction can be skipped.

To get the first register (x) to be compared, we mask the opcode with 0x0F00 and
bitshift it right by 8 bits to convert the resultant into a byte. We mask the opcode
with 0x00F0 and bitshift it right by 4 bits to get the second register (y) that is to be
compared (x) and convert the resultant to a byte. Then, we compare the values at the
two registers (x and y), and if they are equal, we skip the next instruction (by incre-
menting the program counter by 2).

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 uint8_t y = (OPCODE & 0x00F0u) >> 4u;

if(V[x] == V[y])
 PC = PC + 2;

	(ix)	 SYS_6xkk() – LD Vx, byte

This instruction stores the value of kk (a byte) into the register x.
To get the register x, we mask the opcode with 0x0F00 and bitshift it right by

8 bits so as to convert the resultant into a byte. Then, we get the value of kk (a byte)
that is to be stored by masking the opcode with 0x00FF. We then store the value kk
in the register x.

S. B. B. Priyadarshini et al.

143

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 uint8_t kk = (OPCODE & 0x00FFu);
 V[x] = kk;

	(x)	 SYS_7xkk() – ADD Vx, byte

This instruction adds kk (a byte) to the already existing byte in the register x and
stores it in the register x.

To get the register x, we mask the opcode with 0x0F00 and bitshift it right by
8 bits so as to convert the resultant into a single byte. To get kk (a byte), we mask
the opcode with 0x00FF. Then, we add kk (a byte) to the value in the register x and
store the result in the register x.

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 uint8_t kk = (OPCODE & 0x00FFu);
 V[x] = V[x] + kk;

	(xi)	 SYS_8xy0() – LD Vx, Vy

This instruction stores the value in the register y into the register x.
To get the register x, we mask the opcode with 0x0F00 and bitshift it right by

8 bits so as to convert the resultant to a byte. To get the register y, we mask the
opcode with 0x00F0 and bitshift it right by 4 bits so as to convert it to a byte. Then
we store the value of the register y into the register x [14].

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 uint8_t y = (OPCODE & 0x00F0u) >> 4u;
 V[x] = V[y];

	(xii)	 SYS_8xy1 – OR Vx, Vy

This instruction performs a bitwise OR operation on the contents of the x register
and the y register. It then stores the resultant in the x register.

To get the first register (x), we mask the opcode with 0x0F00 and bitshift it right
by 8 bits so as to convert the resultant into a byte. To get the y register, we mask the
opcode with 0x00F0 and bitshift it right by 4 bits so as to convert the resultant into
a byte. Then we perform a bitwise OR operation on the contents of these two regis-
ters and store them in the x register.

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 uint8_t y = (OPCODE & 0x00F0u) >> 4u;
 V[x] = (V[x] | V[y]);

	(xiii)	 SYS_8xy2 – AND Vx, Vy

myCHIP-8 Emulator: An Innovative Software Testing Strategy for Playing Online…

144

This instruction performs a bitwise AND operation on the contents of the x reg-
ister and the y register. It then stores the resultant in the x register.

To get the first register (x), we mask the opcode with 0x0F00 and bitshift it right
by 8 bits so as to convert the resultant into a byte. To get the y register, we mask the
opcode with 0x00F0 and bitshift it right by 4 bits so as to convert the resultant into
a byte. Then we perform a bitwise AND operation on the contents of these two reg-
isters and store the result in the x register.

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 uint8_t y = (OPCODE & 0x00F0u) >> 4u;
 V[x] = (V[x] & V[y]);

	(xiv)	 SYS_8xy3() – XOR Vx, Vy

This instruction performs a bitwise exclusive OR (XOR) operation on the con-
tents of the x register and the y register. It then stores the resultant in the x register.
To get the first register (x), we mask the opcode with 0x0F00 and bitshift it right by
8 bits so as to convert the resultant into a byte. To get the y register, we mask the
opcode with 0x00F0 and bitshift it right by 4 bits so as to convert the resultant into
a byte. Then we perform a bitwise exclusive on the contents of these two registers
and store the result in the x register.

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 uint8_t y = (OPCODE & 0x00F0u) >> 4u;
 V[x] = (V[x] ^ V[y]);

	(xv)	 SYS_8xy4() – ADD Vx, Vy

This instruction adds the content of the x register with the content of the y regis-
ter and stores them in the register x. If the additive result is greater than 8 bits (i.e.,
255), then the carry flag (the VF register) is SET; otherwise it is CLEARED. Only
the lowest 8 bits of the additive result is stored in the x register.

To get the x register, we mask the opcode with 0x0F00u and bitshift it right by
8 bits to convert the result into a byte. To get the y register we mask the opcode with
0x00F0 and bitshift it right by 4 bits to convert the result into a byte. We check if the
additive result of the contents of the x register and the y register is greater than 8 bits
(i.e., 255). The carry flag (VF register) is SET if this condition is true, and it is
CLEARED if this condition is false. We then store the additive result in the x
register.

S. B. B. Priyadarshini et al.

145

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 uint8_t y = (OPCODE & 0x00F0u) >> 4u;
 if((V[x] + V[y]) > 255u)
 V[0xF] = 1;
 else
 V[0xF] = 0;
 V[x] = (V[x] + V[y]);

	(xvi)	 SYS_8xy5() – SUB Vx, Vy

This instruction checks if the content of the x register is greater than the content
of the y register. If the condition is true, then the carry flag (VF register) is SET;
otherwise, it is CLEARED.

To get the x register, we mask the opcode with 0x0F00 and bitshift it by 8 bits so
as to convert the resultant into a byte. To get the y register, we mask the opcode with
0x00F0 and bitshift it right by 4 bits so as to convert the resultant into a byte. We
then check if the content of the x register is greater than the y register. If the condi-
tion is true, we SET the carry flag (VF register); otherwise it is CLEARED. We then
subtract the content of the y register from the content of the x register (i.e., V[x] –
V[y]) and store the result in the x register.

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 uint8_t y = (OPCODE & 0x00F0u) >> 4u;
 if(V[x] > V[y])
 V[0xF] = 1;
 else
 V[0xF] = 0;
 V[x] = (V[x] – V[y]);

	(xvii)	 SYS_8xy6() – SHR Vx {, 2Vy}

This instruction checks if the least significant bit of the content of the x register
is 1. If the condition is true, VF register is SET; otherwise it is cleared.

To get the x register, we mask the opcode with 0x0F00 and bitshift it right by 8
bits so as to convert the resultant to a single byte. We then perform a bitwise AND
operation on the content of the x register and the number 0x1 and store the result in
the VF register (this checks if the least significant bit is 1 or not). We then bitshift
the content of the x register by 1 bit so as to divide it by 2.

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 V[0xF] = (V[x] & 0x1u);
 V[x] = (V[x] >> 1);

	(xviii)	 SYS_8xy7 – SUBN Vx, Vy

myCHIP-8 Emulator: An Innovative Software Testing Strategy for Playing Online…

146

This instruction subtracts the content of the register x from that of y and checks
if the value in y register is greater than that of x. If this condition is true, then the VF
register is SET; otherwise, it is CLEARED.

To get the x register, we mask the opcode with 0x0F00 and bitshift it right by
8 bits. To get the y register, we mask the opcode with 0x00F0 and bitshift it right by
4 bits. We then check if the content of the y register is greater than that of the x
register. If the condition is true, we SET the VF register and CLEAR the VF register
if it is not. We then subtract the content of the y register from the content of the x
register and store the resultant in the x register.

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 uint8_t y = (OPCODE & 0x00F0u) >> 4u;
 if(V[y] > V[x])
 V[0xF] = 1;
 else
 V[0xF] = 0;
 V[x] = (V[y] – V[x]);

	(xix)	 8xyE – SHL Vx, {, Vy

This instruction checks if the most significant bit of the content of the x register
is 1. If the condition is true, then the VF register is SET; otherwise, it is
CLEARED. Then, the content of the x register is multiplied by 2. To get the x reg-
ister, we mask the opcode with 0x0F00 and bitshift it right by 8 bits so as to convert
it into a single byte. We then bitshift the content of the x register by 7 bits right (to
get the most significant bit) and store it in the VF register. This makes sure that the
VF register is SET if the most significant bit is 1 (i.e., the value is greater than 128
since it is the only way for the MSB to be 1 for a 8 bit value) and is CLEARED
otherwise. We then bitshift the content of the x register left by 1 bit so as to multiply
it by 2 [7–10, 15].

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 V[0xF] = V[x] >> 7u;
 V[x] = (V[x] << 1);

	(xx)	 9xy0 – SNE Vx, Vy

This instruction checks if the content of the x register is not equal to that of the y
register. If the condition is true, then the program counter is incremented by 2
(effectively skipping the next instruction).

To get the x register, we mask the opcode with 0x0F00 and bitshift it right by
8 bits so as to convert it into a single byte. To get the y register, we mask the opcode
with 0x00F0 and bitshift it right by 4 bits so as to convert it into a single byte. We
then check if the content of the x register is not equal to the content of the y register.
If the condition is true, then the program counter is incremented by 2.

S. B. B. Priyadarshini et al.

147

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 uint8_t y = (OPCODE & 0x00F0u) >> 4u;
 if(V[x] != V[y])
 PC = PC+2;

	(xxi)	 Annn – LD I, addr

This instruction sets the value of the register I to nnn (an address).
To get the address we mask the opcode with 0x0FFF and store it in the variable

named nnn. We then set the I register to the variable nnn.

 uint16_t nnn = (OPCODE & 0x0FFFu);
 I = nnn;

	(xxii)	 Bnnn – JP V0, addr

This instruction sets the program counter to V0 + addr (i.e., the content of the 0th
register + the address nnn) effectively jumping to that address. This is also an exam-
ple of an unconditional jump.

To get the address (that is to be added to the content of the 0th register), we mask
the opcode with 0x0FFF and store it in the variable named nnn. We then set the
program counter to the additive result of that of the content of the 0th register and
the address nnn.

 uint16_t nnn = (OPCODE & 0x0FFFu);
 PC = (V[0] + nnn);

	(xxiii)	 Cxkk – RND Vx, byte

This instruction performs a bitwise AND operation between the contents of the x
register and kk (a byte). It then stores the result in the x register.

To find out the x register, we mask the opcode with 0x0F00 and bitshift it right
by 8 bits. To find kk (the byte), we mask the opcode with 0x00FF. We then perform
a bitwise and between a random number (that is generated by our PRNG—pseudo
random number generator) and kk (the byte). The result of this operation is stored
in the x register [16, 17].

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 uint8_t kk = (OPCODE & 0x00FFu);
 uint8_t prng_b = rand() & kk;
 V[x] = prng_b;

	(xxiv)	 Dxyn – DRW Vx, Vy, nibble

This instruction displays (on the 64 × 32 screen) a sprite that starts at the memory
location pointed to by the I register. The sprite is displayed at the position pointed

myCHIP-8 Emulator: An Innovative Software Testing Strategy for Playing Online…

148

by the x and the y register. Sprites are XORed onto the screen, and if this causes any
of the previous sprites on the screen to be turned off, then the VF register is SET.

This is the only instruction that’s capable of drawing on the screen and hence the
most important instruction of this whole project. To get the x register, we mask the
opcode with 0x0F00 and bitshift it right by 8 bits so as to convert the resultant into
a byte. To get the y register, we mask the opcode with 0x00F0 and bitshift it right by
4 bits so as to convert the resultant into a byte. The value “n” represents the height
of the sprite. To get n we mask the opcode with 0x000F. We then declare two vari-
ables xc and yc.

The content of the x register is stored in xc, and the content of the y register is
stored in yc. This pair xc and yc denotes the position at which the sprite is to be
drawn. In our first loop (named outside_loop), we iterate from “0” to “n” which is
the number of rows to be drawn. With each iteration, we load the sprite byte from
memory[I + outside_loop_counter] into the variable sprite_byte. For each such
row, we also need to iterate over the byte, bit by bit. This becomes our second loop
(named inside_loop). Since a sprite is 8 bits long, we need eight iterations to iterate
over an entire row. So, we iterate from “0” to “8” for each bit and check if the bit is
SET (i.e., 1). If it is SET, then we need to draw a pixel at the position yyPos=(yc +
outside_loop_counter) and xxPos=(xc + inside_loop_counter). yyPos is named so
because it represents the y-coordinate at which the pixel of the sprite is going to get
drawn. The same goes for xxPos. Since pixels are XORed onto the screen, we must
check for any existing pixel at the point where we are about to draw (because for an
XOR operation, the result is 0 if both the operands are 1). If there is such an existing
pixel, then we SET the VF register. Here, the VF register acts as a collision detector.
Finally, we draw at the position (xxPos, yyPos).

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 uint8_t y = (OPCODE & 0x00F0u) >> 4u;
 uint8_t n = (OPCODE & 0x000Fu);
 uint8_t xc = V[x];
 uint8_t yc = V[y];
 V[0xF] = 0;
for(uint8_t i=0 ; i<n ; i++)
 {
 uint8_t sprite_byte = MEMORY[I + i];
for(uint8_t col=0 ; col<8 ; col++)
 {
 uint8_t sprite_bit = sprite_byte& (0x80u
>> col);
 uint8_t yyPos = yc + i;
 uint8_t xxPos = xc + col;
xxPos = xxPos%64;
yyPos = yyPos%32;
 uint32_t *spp = &VIDEO[(yyPos) * 64 + (xxPos)];
 if(sprite_bit)
 {

S. B. B. Priyadarshini et al.

149

if(*spp == 0xFFFFFFFF)
 V[0xF] = 1;
 *spp ^= 0xFFFFFFFF;
 }
 }
}
Notice how be iterate over an entire byte, bit-by-bit:
for(uint8_t col=0 ; col<8 ; col++)
 {
 uint8_t sprite_bit = sprite_byte& (0x80u
>> col);

Let’s say our sprite_byte is 01011010

When col = 0, sprite_bit = 01011010 & (0x80u >> 0)
i.e.
 0 1 0 1 1 0 1 0
& 1 0 0 0 0 0 0 0 (0x80u >> 0 = 10000000 >> 0 = 10000000)

 0 0 0 0 0 0 0 0

Similary,
When col = 4, sprite_bit = 01011010 & (0x80 >> 4)
i.e.
 0 1 0 1 1 0 1 0
 0 0 0 0 1 0 0 0 (0x80u >> 4 = 10000000 >> 4 = 00001000)
& --------------------
 0 0 0 0 1 0 0 0

	(xxv)	 Ex9E – SKP Vx

This instruction increments the program country by 2 if the key with the value
represented by the content of the x register is pressed.

To get the x register, we bitmask the opcode with 0x0F00 and bitshift it right by
8 bits so as to convert the resultant into a byte. Then we check if the key with the
value of the x register is pressed. If the condition is true, then the program counter
is incremented by 2 (effectively skipping the next instruction).

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 uint8_t k = V[x];
if(KEYPAD[k])
 PC = PC + 2;

myCHIP-8 Emulator: An Innovative Software Testing Strategy for Playing Online…

150

	(xxvi)	 ExA1 – SKNP Vx

This instruction increments the program country by 2 if the key with the value
represented by the content of the x register is not pressed.

To get the x register, we bitmask the opcode with 0x0F00 and bitshift it right by
8 bits so as to convert the resultant into a byte. Then we check if the key with the
value of the x register is not pressed. If the condition is true, then the program coun-
ter is incremented by 2 (effectively skipping the next instruction).

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 uint8_t k = V[x];
 if(!KEYPAD[k])
 PC = PC + 2;

	(xxvii)	 Fx07 – LD Vx, DT

This instruction loads the x register with the value of the delay timer.
To get the x register, we mask the opcode with 0x0F00 and bitshift it right by

8 bits so as to convert the resultant into a byte. Then we place the value of the delay
timer register into the register x.

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 V[x] = DT;

	(xxviii)	 Fx0A – LD Vx, K

This instruction waits for a key press. Until a key is pressed, all execution stops.
To get the x register, we mask the opcode with 0x0F00 and bitshift it right by

8 bits so as to convert the resultant into a byte. We then check if any of the 16 keys
is pressed. If the condition is true, then the normal execution continues. If this con-
dition is false, then we decrement the program counter by 2. This effectively means
that until a key is pressed our program will not continue forward.

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 bool flag = false;
for(int k=0 ; k<16; k++)
if(KEYPAD[k])
 {
 V[x] = k;
 flag = true;
 break;
 }
if(flag == false)
 PC = PC – 2;

S. B. B. Priyadarshini et al.

151

	(xxix)	 Fx15 – LD DT, Vx

This instruction loads the delay timer register with value present in the x register.
To get the x register, we mask the opcode with 0x0F00 and bitshift it right by 8

bits so as to convert the resultant into a byte. We then get the value present in the x
register and load it into the delay timer register.

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 DT = V[x];

	(xxx)	 Fx18 – LD ST, Vx

This instruction loads the sound timer register with the value present in the x
register.

This instruction is ignored by our interpreter.

	(xxxi)	 Fx1E – ADD I, Vx

This instruction adds the value of the I register and the value of the x register. It
then places the result into the I register.

To get the x register, we mask the opcode with 0x0F00 and bitshift it right by
8 bits so as to convert the resultant into a byte. We then add the value in the I register
and the value present in the x register. This additive result is placed in the I register.

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 I = I + V[x]

	(xxxii)	 Fx29 – LD F, Vx

This instruction places the memory address of the sprite of the digit (present in
the x register) into the I register.

To get the x register, we mask the opcode with 0x0F00 and bitshift it right by
8 bits so as to convert the resultant into a byte. We then find the digit (0x0 – 0x16
i.e., 0 – F) of the sprite whose position is to be loaded in the I register. We then
multiply the digit by 5 (to get the offset at which the said digit resides in memory)
and place this result in the I register.

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 uint8_t digit = V[x];
 I = (5 * digit);

	(xxxiii)	 Fx33 – LD B, Vx

This instruction stores the BCD (binary coded decimal) value of the content of
the x register into the memory locations I, I + 1 and I + 2.

To get the x register, we mask the opcode with 0x0F00 and bitshift it right by 8
bits so as to convert the resultant into a single byte. Since an unsigned 8-bit number
can only go up to 255, we find out the last digit and place it into MEMORY[I + 2].

myCHIP-8 Emulator: An Innovative Software Testing Strategy for Playing Online…

152

Then we find out the second-last digit and place it into MEMORY[I + 1]. And
finally we find out the third last digit, that is, the first digit, and place it into
MEMORY[I]. This is done by a series of repeated divisions and modulo operations.

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
 uint8_t number = V[x];
MEMORY[I + 2] = number % 10;
 number = number / 10;
MEMORY[I + 1] = number % 10;
 number = number / 10;
MEMORY[I + 0] = number % 10;

	(xxxiv)	 Fx55 – LD [I], Vx

This instruction places the contents of the registers beginning from the 0 register
to the x register into the memory location starting at the value of the I register.

To get the x register, we mask the opcode with 0x0F00 and bitshift it right by
8 bits so as to convert the resultant into a byte. We then place the contents of the
registers beginning from the 0 register to the x register starting at memory location I.

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
for(uint8_t r=0 ; r<=x ; r++)
MEMORY[I + r] = V[r]

	(xxxv)	 Fx65 – LD Vx, [I]

This instruction places the contents of the memory location starting at the value
of the I register into the registers beginning from the 0 register to the x register.

To get the x register, we mask the opcode with 0x0F00 and bitshift it right by
8 bits so as to convert the resultant into a byte. We then place the contents of the
memory location starting at the value of the I register into the registers beginning
from the 0 register to the x register.

 uint8_t x = (OPCODE & 0x0F00u) >> 8u;
for(uint8_t r=0 ; r<=x ; r++)
 V[r] = MEMORY[I + r]

5 � Result Discussion and Debugging Issues

As soon as the emulator was finished, it was clear to us that the code would require
some debugging to remove bugs for automated software testing [9]. Some games
like to invoke a particular instruction that was present on the real machine on which

S. B. B. Priyadarshini et al.

153

CHIP-8 was originally programmed and was not available in our machines. The
emulator was then strictly directed to ignore such instruction. It would process the
instruction, but the instruction itself will not do anything. Another problem was of
pixel wrapping. Some games allowed pixels to go out of the screen. This was a
problem for us since the display was of fixed size and accessing anything out of the
video buffer resulted in a segmentation fault. This was fixed by making sure that
pixels that would be drawn outside the screen will now be wrapped around the
screen. We also fixed two logical instructions that behaved a bit differently than
what our technical reference claimed.

The problem was that most references directed to check for strictly greater than
or strictly less than comparisons, but they never cited what would happen in case of
equality. If we ignored equality cases, the two instructions would work improperly,
and in a particular game, they would result in a sprite getting redrawn when it was
not supposed to. The unit and integration testing employed in our approach ensure
the reliability and portability of our proffered system.

Debugging this issue was particularly tedious because it required to step over
instructions of the said game one by one to see which particular instruction was
causing the issue. It was also tedious because of the fact that we did not expect
instructions that did logical comparisons to be responsible for the sprite redrawing
bug in the said game. As a result, we spent days going over our draw instruction and
making sure it was correct before realizing that it was the comparison instruction
that was the problem. With these bugs ruled out, our emulator worked perfectly with
all games that we tested on it.

6 � Conclusions

Our primary motivation behind choosing to build a basic emulator was to under-
stand the fundamentals of how CPUs worked. We were always fascinated by micro-
processors especially the older ones such as the 6502, Z80, 8086, m68k, etc. These
were very successful CPUs that were used in many video game consoles while
considering testing. For example, the 6502 was used on the NES and the Z80 on the
Pac-Man arcade machine. Also, the legendary personal computer, the Commodore
Amiga, was powered by one of these processors as well—the m68k. This project
gave us an insight into writing emulators while considering both reusability, porta-
bility, and reliability of the software developed, and we hope the knowledge gained
from this project will help us write more complex emulators in the future.

Acknowledgment  We would like to thank the Department of Computer Science & Information
Technology, Institute of Technical Education & Research, Siksha ‘O’ Anusandhan Deemed to be
University for making this investigation successful.

myCHIP-8 Emulator: An Innovative Software Testing Strategy for Playing Online…

154

References

1.	http://www.multigesture.net/articles/how-to-write-an-emulator-chip-8-interpreter/
2.	http://devernay.free.fr/hacks/chip8/C8TECH10.HTM
3.	Osman, I., & Kelly, J. (1996). Meta-hueuristics theory and applications (pp. 1–690)

ISBN:978-1-4613-1361-8.
4.	Sharma, M., & Kaur, P. (2021). A Comprehensive analysis of nature-inspired meta-heuristic

techniques for feature selection problem. Archives of Computational Methods in Engineering,
28, 1103–1127.

5.	 Jones, N. (1999). Arrays of pointers to functions: Embedded systems programming. Embeded
Systems Programming, 46–56.

6.	Martinez, F., Herrero, C., & Pablo, S. D. (2014). Open loop wind turbine emulator. In
Renewable energy (Vol. 63, pp. 212–221). Elsevier.

7.	Mizutani, I., & Mitsugi, J. (2016). A multicode and portable RFID tag events emulator for
RFID information system. In Proceeding of 6th international conference on internet of things
(pp. 187–188).

8.	Babacan, Y., & Kakar, F. (2016). Floating memristror emulator with subthreshold region (Vol.
90, pp. 471–475). Springer.

9.	Priyadarshini, S. B. B., & Panigrahi, S. (2017). A distributed scalar controller selec-
tion schemefor redundant data elimination in sensor networks. International Journal of
Knowledgediscovery in Bioinformatics, IGI Global, 7(1), 91–104.

10.	Ahrenholz, J., Goff, T., & Adamson, B. (2011). Integration of the CORE and EMANE network
emulators. In MILCOM 2011 military communications conference.

11.	Jena, A., Das, A. K., Mohapatra, H., & Prasad, D. (2020). Automated software testing founda-
tions, applications and challenges (pp. 1–165) ISBN:978-981-15-2455-4.

12.	Ellims, M., & Jackson, K. ISO 9001: Making the right mistakes (SAE Technical Paper Series
2000-01-0714).

13.	Davis, M., & Weyuker, E. J. (1998). Metric-based Test data Adequacy criteria. Computer
Journal, 13(1), 17–24.

14.	Jorgensen. (1995). Software testing a craftsman’s approach. CRC Press.
15.	Lyu, M. R., Huang, Z., Sze, S. K., & Cai, X. (2003). An empirical study on testing and fault

tolerance for software reliability engineering (pp. 119–130).
16.	McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software Engineering,

2(4), 202–213.
17.	Richard, D. J., & Thompson, M. C. (1993). An analysis of test data selection criteria using the

relay model of fault detection. IEEE Transactions on Software Engineering, 19(6), 533–553.
18.	Torkar, R., Mankefors, S., Hansson, K., & Jonsson, A. (2003). An exploratory study of com-

ponent reliability using unit testing. In Proceeding 14 international symposium on system
reliability engineering (pp. 227–233).

19.	Voas, J. M., & Miller, K. W. (1995). Software testability: The new verification. Software, 17–18.
20.	Zhu, H. (1996). A formal analysis of subsume relation between software testing adequacy

criteria. IEEE Transactions on Software Engineering, 22(4), 248–255.
21.	Zhu, H., Hall, P. A. V., & May, J. H. R. (1997). Software unit test coverage and adequacy. ACM

Computing Surveys, 29(4), 366–427.

S. B. B. Priyadarshini et al.

http://www.multigesture.net/articles/how-to-write-an-emulator-chip-8-interpreter/
http://devernay.free.fr/hacks/chip8/C8TECH10.HTM

155

Defects Maintainability Prediction
of the Software

Kanta Prasad Sharma, Vinesh Kumar, and Dac-Nhuong Le

1 � Introduction

Software development does not end with the build of software, as there is an extreme
need to maintain the software even after it is deployed or built, and this leads to the
advent for research in the software maintenance field to find the effective method to
predict the software maintainability. The identification and bug removable from the
real-time working software is called software maintainability which allocates spe-
cific resources to the software to keep it working on. Various researches have been
performed to solve this issue that aims to build a model that can predict the software
maintainability efficiently so that the bugs can be fixed and new functionalities can
be added to the software [1]. This resolution of software issues aids the organiza-
tions to have a very high impact on the industry. As software maintainability is
enhanced by fixing bugs and removing defects, the defects should also have an
impact on tracking and finalizing the software maintainability [2]. Hence, this
research provides a proposed method based on the implementation of two experi-
ments for the impact of defects on software maintainability detection problem by
calculating the MI score that classifies the problem into two classes on the basis of
a threshold or fixed value [3–5].

In the modern era, the role of software maintainability has become a fundamen-
tal requirement for existing as well as upcoming software. The latest techniques and
autonomous software measure performance and support for decision-making in the
industry [6]. The proposed research work provides a review status on the previous

K. P. Sharma · V. Kumar
University Institute of Computing, Chandigarh University Mohali, Ludhiana, Punjab, India
e-mail: vinesh.e11095@cumail.in

D.-N. Le (*)
Faculty of Information Technology, Haiphong University, Haiphong, Vietnam
e-mail: nhuongld@dhhp.edu.vn

© Springer Nature Switzerland AG 2022
M. Khari et al. (eds.), Optimization of Automated Software Testing Using
Meta-Heuristic Techniques, EAI/Springer Innovations in Communication and
Computing, https://doi.org/10.1007/978-3-031-07297-0_10

mailto:vinesh.e11095@cumail.in
mailto:nhuongld@dhhp.edu.vn
https://doi.org/10.1007/978-3-031-07297-0_10

156

factor of software maintainability assessment based on five existing developed
models. These models are imposed in the industrial software systems for auto mode
performance analysis, and some models are also useful for their effectively involve-
ment as industrial software systems [7].

The main motive of the proposed work is to show the impact of defects on main-
tainability prediction. The flow of paper is managed in six sections. The overview
based on a literature review on the software maintainability test in Sect. 2. Section
3 describes the fundamental knowledge that is needed in order to perform the pro-
posed work. Section 4 describes the methodology that is designed to deploy the
proposed work. In Sect. 5, experimental results are presented that satisfactorily
prove the aim of the proposed work. Finally, Sect. 6 concludes the paper presenting
the reasons for the efficacy of the proposed work.

2 � Literature Survey

This section describes some of the studies that have been carried out in the respec-
tive field.

Propounded different features are directly affected on the maintainability of the
software such as testability, stability, changeability, and analyzability [8]. They also
analyzed the effect of various complexity measures like RFC, WMC, DIT, CBO,
and NOC on the stated factors/features. The improvements on complexity measures
as CBO_U, CBU_IUB, CBO_NA, NOC and also explored the sub-features of
software with inheritance, linking of modules, space and time performance analy-
sis, and that cause of maintainability prediction of the working software [1, 9].

Ghosh et al. proposed a three-feature model in which they considered various
components that affect the complexity, such as nested components, operations, and
attributes [2, 10]. The issue of software maintainability is used the vulnerability
knowledge of software is predicted using a self-learning approach. SMP learner is
to aid learning of maintainability prediction models using self-learning approach by
employing 44 four-level code measures. In addition, they utilized 150 experimental
results to evaluate the SMP learner [13, 14]. In this chapter, the proposed model
outperform indicate as the behavior four metrics based MI model as well as other
traditional maintainability prediction models.

The SMEM-MCC model is used to evaluate software maintainability utilizing
combination of classifiers [4, 15]. Firstly, they used generic algorithm to select the
attributes that are most relevant for software maintainability prediction. Thereafter,
they classified 300 software class metrics using decision tree classifier and obtained
outperforming results than SMO, BPNN, and simple classifier. Propounded
enhanced SVM-based technique [5], SVMSBCTC to detect identical bugs’ report
[16]. They considered three features based on textual correlation and three OS proj-
ects—SVN, ArgoUML, and Apache—to execute the proposed research work. Their
experimental results have shown the proposed SVMSBCTC as an outperformer
when compared with the SVM-54 method [17, 18].

K. P. Sharma et al.

157

Deep learning has also been taken into consideration for software maintainabil-
ity metrics prediction since the last few years. A deep learning principal is used for
real-time prediction and maintainability on 299 software data using five machine
learning models [6]. They have exploited 29 OO metrics to accomplish the pro-
posed work. The outcomes have shown that their proposed LSTM model outper-
formed other machine learning baselines taken into consideration [19].

MI metric given by Oman and Hagemeister [7] is widely used to predict software
maintainability since the last several studies. Maintainability of conventional code
blocks can be easily detected using MI metric, and the object-oriented code blocks
can be easily taken into consideration for maintainability check using this metric
after its adaptation by OO with some specific limitations. Welker [8] check the
validity of MI metric on software maintainability prediction. The experimental
results shown by him also gave evidence for the validity of MI measure on conven-
tional code blocks. Aggrawal et al. [9] have propounded ANN principal adopted to
enhance the maintainability performance of object-oriented code utilizing OO
metrics.

Thwin et al. [10] have also proposed NNets to estimate the quality of software
utilizing the OO metrics. Zhou et al. [11] have propounded software applications to
find metrics used to detect the maintainability of software. Zhou et al. [12] provide
the connection between the software maintainability and the metrics. They have
detected the maintainability in software using OO metrics. Majumder et al. [13]
have taken a software jfreechart, to perform a case study in order to propound a
model for maintainability prediction. Padhy et al. [14] have proposed a novel tech-
nique to evaluate software metrics using an evolutionary intelligence method. The
proposed model computes threshold values on the software metrics parameters
using the proposed method. The literature review provides an existing model for
detecting the maintaining the reliability in OO software.

Objective of the proposed method: to analysis, the sub-module implementation
as software ontology for opens sources software. The open software has many bugs
in the quality [17, 18]. This research chapter explains how to reduce bugs that are
reported as issues of the software. The motivation for the proposed concept is based
on the literature review. A software bug called fault means an event occurs when
delivered services are diverted from the existing services. This study mainly
focuses on:

•	 How software maintainability change?
•	 What are the fundamental issues of declining quality of software?

The maintainability issues and their hierarchy are described in Fig. 1. Many
research questions are analyzed in this process, like classification of bugs and bugs
process and their issues [20]. This study influences the bugs’ response between cli-
ent and server responses. During the maintainability process, the sub-modules of
software which focus on software quality are dependent on each component of
modules and also identify root causes of bugs along the chain process (see in Fig. 1).

The software hierarchy and upper level focus on business classes like costing and
timing process of software that’s value proposition depend on effective services,

Defects Maintainability Prediction of the Software

158

Defects
Maintainability

Repairability

Diagnosability Understandability
Modularity
Scalability
Portability

Accessibility
Restorability

Changes

Modifiability

Fig. 1  Software quality
maintainability process

maximum utilization of resources, module dependency, and flexibility of the soft-
ware [21]. The next level of software maintainability monitors the different tasks of
software, like critical and complex stage of software quality, which is the main
cause of various maintainability relationships.

The propose model handles the defects of software such as diagnosability which
means to identify the error messages (log messages, failure of test, unreliable infor-
mation for proper assessment) which are the main cause of software quality. Another
important factor is accessibility which means that the user is able to access the
needed domain of software [22–25]. The cause of accessibility is log messages and
test failure on the user accessing data and redirection of function processing or
unaccepted location of data place.

3 � Pre-requisite Knowledge

This section describes some relevant knowledge regarding the experiments per-
formed on the proposed model and also measures the effectiveness of the pro-
posed method.

3.1 � Random Forest

The software provides auto-guided learning technique, which finds the class of the
test data by aggregating the decisions of the decision tree classifier applied on the
random set of training data (see Fig. 2).

The reason behind the selection of this classifier is its capability of handling
large datasets by predicting more accurate results. Moreover, its effectiveness for
missing data estimation puts it into the nomination of classifiers.

K. P. Sharma et al.

159

Fig. 2  Random forest

Fig. 3  k-fold cross
validation

3.2 � K-Fold Cross Validation

In k-fold cross validation, the sample data is split into k subsets, which are called
folds. So, ML model implements on all split data subset and processes, each one
(k-1) of the subsets in the sequence as a trailed till kth times (see Fig. 3).

The proposed model evaluates each training performance using fivefold cross
validation.

3.3 � Software Metrics

Chidamber and Kemerer (CK) [15–17] have proposed some OO design metrics to
compute the maintainability effort. Some of them are discussed in this section [24].

Defects Maintainability Prediction of the Software

160

•	 Size 2: It measures the size of the class and provides valid information of sub-
modules and details of attributes in a class.

•	 Size 1: The preliminary parameters of the class are listed below.

–– Number of Local Methods (NOM): This process describes static or local
methods/functions in object-oriented matrix.

–– Data Abstraction Coupling (DAC): The data format and its retrieval without
changing internal working process during data access by the application.

–– Message Passing Coupling (MPC): This parameter provides log details of
message variables and send statement which are define inside the class.

–– Lack of Cohesion on Methods (LCOM): The cohesion parameter is used to
link the sub-models or local method properly, and data flow should be smooth
during testing.

–– Weighted Methods per Class (WMC): These parameters compute the possi-
ble bugs based on existing variables using Mccabe’s cyclomatic principal.

–– Response for a Class (RFC): These parameters provide the relationship and
flow of data during debugging and testing to measure the cardinality of the
respective class responses.

–– Number of Children of a Class (NOC): It provides information related to all
sub-models in each class.

–– Depth of Inheritance Tree (DIT): The file and directory creation and analysis
process related to each class.

–– Maintainability Index (MI): Software metric which computes and manages
entire information of each process like source code. The MI is computed as a
factored formula consisting of Halstead volume, Cyclomatic complexity, and
lines of code.

HV = Halstead volume
CC = Cyclomatic complexity
LOCO = number of source lines of code

From these measurements, the MI can be calculated by Eq. (1)

	
M i in n� � � � � � � � � �� ��max(,(. . .o HV LOCO175 5 3 0 23 16 2

100

171 	 (1)

3.4 � Performance Assessment Measures

Accuracy: It can be computed by dividing the true predicted results by the total
results. In terms of confusion matrix data, accuracy can be calculated using the
following formula:

	
ACC

TN TP

FP TP FN TN
�

�
� � � 	 (2)

K. P. Sharma et al.

161

F-score: F-score is computed and analyzes the performance of the proposed model
which provides information for precision and recalls scores as a single measure.
It can be calculated using the following formula:

	
Fscore

Rec

Rec
rc

rc

�
� �

�
2 P

P 	 (3)

3.5 � Need of Predictability

The software quality is fully dependent on the software development process attri-
butes like accuracy and proper meaningful documentation, reliable modulation, and
proper cohesion implementation [25]. The software maintainability focuses on the
maximum costing of project budget. The evaluation of software is also part of same
model like maintenance after deliver to the client, during the operation mode, many
changes are required by the client, which are considered as unpredictable changes
due to a variety of faults, scope which increase the cost of software maintenance
after delivery to the client.

The software volumes are automatically started here with risk analysis process
[19]. These stages indicate that the current design of the software is not much reli-
able under the current conditions, so software moves to the prediction process and
development phase, which is also called stress testing. The same recycle is continu-
ing until clients are satisfied.

4 � Proposed Methodology

4.1 � Datasets

The reliability of sample dataset is a very important factor for consolidated perfor-
mance analysis. Our results are based on authentic dataset [18–22]. Research insti-
tutes are providing open access for researchers the profiled dataset based on various
parameters (see in Table 1).

Table 1  Dataset sample

Group Dataset
Total number of
instances

No. of defective
instances

No. of non-defective
instances

SOFTLAB ar3 63 8 55
SOFTLAB ar4 107 20 87
SOFTLAB ar6 101 15 86

Defects Maintainability Prediction of the Software

162

Training Data Set

Pre-processing &
Label Encoding

Addition/Removal
of Defect Data

Training
Data

Classifier Learning

Performances
Report

Maintenance
Prediction Model

Testing Data

Dataset

30%

70%

Fig. 4  Proposed methodology

4.2 � Proposed Method

In this methodology, the research dataset is divided for the client testing process or
white box testing on various parameters through various evaluation processes on the
data ratio (7:3). Data preprocessing is applied along with label encoding. We have
computed the maintainability index (MI) using the stated formula. In order to deter-
mine the impact of defects in the maintainability prediction, we have classified it
into a binary class problem. MI greater than 20 depicts high maintainability and is
coded as class 1, and less than or equal to 20 has low maintainability and is coded
as class 0 (see Fig. 4).

We conducted two experiments: In the first experiment, we have predicted the
MI using the dataset without the number of defect attribute. In the second experi-
ment, we have predicted the MI target class with the number of defect attributes
along with the other metrics. The proposed model used the random forest principle
for predicting the ensemble learning classifier. Software performance is evaluated
using accuracy and F-score as the performance measures. The below figure describes
the proposed methodology.

5 � Results

This section shows the results that are obtained through our experiments using the
proposed method.

K. P. Sharma et al.

163

Fivefold Cross Validation
The proposed model is applied fivefold cross validation process to analyze the client
training performance on the software. In this case, the proposed method did not over
fit during training, the various test on the number of folds and discuss in five fold
cross validation outcomes and performance of model training under five fold cross
validation. The proposed model provides reliable services on the given set of train-
ing data gaining the highest training accuracy, which is 85.92%.

Table 3 shows the performance assessment results of the model that is trained
using the dataset that does not include the number of defect attribute during the
training of the classifier.

Table 4 shows the performance assessment results of the model that is trained
using the dataset that includes the number of defect attributes during the training of
the classifier.

The results obtained from the two tables show that the software defect has a great
impact on the software maintainability predictability. The results obtained using
case 2 more accurately predict the software maintainability index as compared to
the case 1 when the defects are not taken into consideration during the training of
the model. Moreover, we have compared the two cases using the graphical method.
The results obtained in terms of accuracy are shown in Fig. 5. It shows that the

Table 2  Results of fivefold cross validation

No. of folds Accuracy (%)

1 85.12
2 84.92
3 85.17
4 85.42
5 85.16

Table 3  Results of MI prediction without the number of defects attribute

Dataset
Accuracy

F-scoreTraining Testing

AR3 0.86 0.81 0.83
AR4 0.89 0.85 0.78
AR6 0.78 0.80 0.75

Table 4  Results of MI prediction with the number of defects attribute

Dataset
Accuracy

F-scoreTraining Testing

AR3 0.88 0.86 0.88
AR4 0.89 0.87 0.84
AR6 0.77 0.86 0.82

Defects Maintainability Prediction of the Software

164

0.65

0.7

0.75

0.8

0.85

0.9

AR3 AR4 AR6

F-score without defects F-score with defects

Fig. 6  Comparison of two proposed maintainability prediction techniques using F-score

0.7

0.75

0.8

0.85

0.9

AR3 AR4 AR6

Training accuracy without defects Testing accuracy without defects

Training accuracy with defects Testing accuracy without defects2

Fig. 5  Comparison of two proposed maintainability prediction techniques using accuracy

training and testing accuracy thus obtained is higher when defects are taken into
consideration as compared to the results in case 1.

Similarly, the F-score measure obtained is compared in Fig. 6. It shows that the
model when feed using the defect information is well trained and hence well pre-
dicts the software maintainability as compared to that case when the defect data is
not available.

6 � Conclusion

The major objective is to compute the effect of defect prediction data on software
maintainability detection. The experimental results performed using the three data-
sets AR3, AR4, and AR6 have proven that the MI prediction method gives better
performance based on F-score when the defects are taken into consideration to train
the random forest classifier, than the trained classifier without using the defect
information.

K. P. Sharma et al.

165

Thus it can be concluded that the defect prediction is useful if the maintainability
of the system is to be detected well resulting in production of an error free and reli-
able software as the defects information aids the classifier in better learning by
overcoming the over-fitting issue. Therefore better the learning better the predic-
tion. In the future, other huge datasets can be also considered with more defects and
bugs information to detect the software maintainability.

Acknowledgments  This research is funded by Vietnam National Foundation for Science and
Technology Development (NAFOSTED) under grant number 102.03-2019.10.

References

1.	Goel, S., Krishnamurthy, S., & Hampsey, M. (2012). Mechanism of start site selection by RNA
polymerase II: Interplay between TFIIB and Ssl2/XPB helicase subunit of TFIIH. Journal of
Biological Chemistry, 287(1), 557–567.

2.	Ghosh, S., Dubey, S. K., & Rana, A. (2012). Fuzzy maintainability model for object oriented
software system. International Journal of Computer Science Issues (IJCSI), 9(4), 338–342.

3.	Zhang, W., Huang, L., Ng, V., & Ge, J. (2015). SMPLearner: Learning to predict software
maintainability. Automated Software Engineering, 22(1), 111–141.

4.	Ye, F., Zhu, X., & Wang, Y. (2013). A new software maintainability evaluation model based
on multiple classifiers combination. In 2013 International Conference on Quality, Reliability,
Risk, Maintenance, and Safety Engineering (QR2MSE) (pp. 1588–1591).

5.	Lin, M. J., Yang, C. Z., Lee, C. Y., & Chen, C. C. (2016). Enhancements for duplication detec-
tion in bug reports with manifold correlation features. Journal of Systems and Software, 121,
223–233.

6.	 Jha, S., Kumar, R., Abdel-Basset, M., Priyadarshini, I., Sharma, R., et al. (2019). Deep learn-
ing approach for software maintainability metrics prediction. IEEE Access, 7, 61840–61855.

7.	Oman, P., & Hagemeister, J. (1994). Construction and testing of polynomials predicting soft-
ware maintainability. Journal of Systems and Software, 24(3), 251–266.

8.	Welker, K. D. (2001). The software maintainability index revisited. CrossTalk, 14, 18–21.
9.	Aggarwal, K. K., Singh, Y., Kaur, A., & Malhotra, R. (2008). Application of artificial neu-

ral network for predicting maintainability using object-oriented metrics. World Academy
of Science, Engineering and Technology, International Journal of Computer, Electrical,
Automation, Control and Information Engineering, 2(10), 3552–3556.

10.	Thwin, M. M. T., & Quah, T. S. (2005). Application of neural networks for software quality
prediction using object-oriented metrics. Journal of Systems and Software, 76(2), 147–156.

11.	Zhou, Y., & Leung, H. (2007). Predicting object-oriented software maintainability using multi-
variate adaptive regression splines. Journal of Systems and Software, 80(8), 1349–1361.

12.	Zhou, Y., & Xu, B. (2008). Predicting the maintainability of open source software using design
metrics. Wuhan University Journal of Natural Sciences, 13(1), 14–20.

13.	Majumder, R., Som, S., & Gupta, R. (2017). Vulnerability prediction through self-learning
model. In 2017 International Conference on Infocom Technologies and Unmanned Systems
(Trends and Future Directions) (ICTUS) (pp. 400–402).

14.	Padhy, N., Panigrahi, R., & Neeraja, K. (2021). Threshold estimation from software metrics by
using evolutionary techniques and its proposed algorithms, models. Evolutionary Intelligence,
14, 1–15.

15.	Chidamber, S. R., & Kemerer, C. F. (1991). Towards a metrics suite for object oriented design.
In Conference proceedings on object-oriented programming systems, languages, and applica-
tions (pp. 197–211).

Defects Maintainability Prediction of the Software

166

16.	Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6), 476–493.

17.	Chidamber, S. R., Darcy, D., & Kemerer, C. F. (1998). Managerial use of metrics for object-
oriented software: An exploratory analysis. IEEE Transactions on Software Engineering,
24(8), 629–639.

18.	Ghenname, M., Abik, M., Subercaze, J., Gravier, C., Laforest, F., & Ajhoun, R. (2015).
Hashtag-based learning profile enrichment for personalized recommendation in e-learning
environments. Int Rev Comput Softw (IRECOS), 10, 891–899.

19.	Gupta, S., & Sharma, K. P. (2020, March). A review on applying tier in multi cloud database
(MCDB) for security and service availability. In 2020 International Conference on Computer
Science, Engineering and Applications (ICCSEA) (pp. 1–4). IEEE.

20.	Solanki, M. S., Goswami, L., Sharma, K. P., & Sikka, R. (2019, December). Automatic detection
of temples in consumer images using histogram of gradient. In 2019 International Conference
on Computational Intelligence and Knowledge Economy (ICCIKE) (pp. 104–108). IEEE.

21.	Le, B. N., Le, D. N., & Nguyen, G. N. (2016, November). Optimizing selection of PZMI
features based on MMAS algorithm for face recognition of the online video contextual adver-
tisement user-oriented system. In International symposium on integrated uncertainty in knowl-
edge modelling and decision making (pp. 317–330). Springer.

22.	Le, D. N., Nguyen, G. N., Bao, T. N., Tuan, N. N., Thang, H. Q., & Satapathy, S. C. (2021,
April). MMAS algorithm and Nash equilibrium to solve multi-round procurement problem.
In Advances in systems, control and automations: Select proceedings of ETAEERE 2020
(pp. 273–284). Springer Singapore.

23.	Bao, T. N., Huynh, Q. T., Nguyen, X. T., Nguyen, G. N., & Le, D. N. (2020). A novel particle
swarm optimization approach to support decision-making in the multi-round of an auction by
game theory. International Journal of Computational Intelligence Systems, 13(1), 1447–1463.

24.	Le, D. N. (2017). A new ant algorithm for optimal service selection with end-to-end QoS con-
straints. Journal of Internet Technology, 18(5), 1017–1030.

25.	Le, D. N., Nguyen, G. N., Garg, H., Huynh, Q. T., Bao, T. N., & Tuan, N. N. (2021). Optimizing
bidders selection of multi-round procurement problem in software project management using
parallel max-min ant system algorithm. Computers, Materials & Continua, 66(1), 993–1010.

K. P. Sharma et al.

167

EncryptoX: A Hybrid Metaheuristic
Encryption Approach Employing Software
Testing for Secure Data Transmission

Sushree Bibhuprada B. Priyadarshini, Aayush Avigyan Sahu, Vishal Ray,
Padmalaya Ray, and Swareen Subudhi

1 � Metaheuristics and Background Study

Nowadays, metaheuristic is a very popular approach that involves analytical optimi-
zation while incorporating higher level procedures. In the current chapter, we have
used a hybrid metaheuristic strategy, namely, EncryptoX, that employs software
testing for secure data transmittal [1].

1.1 � Introducing EncryptoX

Cloud technology and cybersecurity are the emerging topics of today’s era of tech-
nological progression [3]. In the current chapter, we are pleased to present the novel
project EncryptoX, where proper planning and metaheuristic methods employing
software testing were followed while doing this project so as to make it efficient.
Practical knowledge is as important as theoretical knowledge while testing our prof-
fered system.

1.2 � Objective

The main aim is to achieve a secure platform for storing of files on cloud using
hybrid cryptography. The predominant issue of data security and privacy is increas-
ingly affecting the readiness of small and medium businesses to migrate their data
from on-site to cloud facilities. The cloud technology has improved drastically in

S. B. B. Priyadarshini · A. A. Sahu (*) · V. Ray · P. Ray · S. Subudhi
Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, Odisha, India

© Springer Nature Switzerland AG 2022
M. Khari et al. (eds.), Optimization of Automated Software Testing Using
Meta-Heuristic Techniques, EAI/Springer Innovations in Communication and
Computing, https://doi.org/10.1007/978-3-031-07297-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07297-0_11&domain=pdf
https://doi.org/10.1007/978-3-031-07297-0_11

168

the past several years, and users can easily access data from cloud remotely with
unlimited access.

There is a very big concern whether such providers are able to provide a secure
and reliable service which can keep the user’s files safe and secure from hackers.
Appreciably, some have managed to deploy either symmetric or asymmetric cryp-
tography techniques to achieve some level of security on cloud storage. This project
focuses on cloud storage security issues while giving particular attention to emerg-
ing hybrid cryptography [1, 4].

Cloud computing is an innovative model for delivering services and information
using current technologies. Physical storage devices are gradually becoming obso-
lete. The globalization of business that has necessitated sharing data for working
collaboratively and on multiple personal devices is the reason for this change. Cloud
storage is most applicable in the new era because it facilitates easier collaboration
and convenient shifts from one device to another by providing a singular platform
to connect multiple individuals and devices remotely [4, 5]. However, cloud storage
technologies yet introduce various data storage securities such as leakage, unwar-
ranted access, and illegal modification. Such risks have necessitated the implemen-
tation of hybrid cryptography and other techniques of ensuring data on cloud
facilities to be secure.

The implementation of hybrid cryptographic techniques is better than imple-
menting either symmetric or asymmetric cryptography while employing meta-
heuristic scheme. In the analysis of cloud storage security, the hybrid cryptography
is very secure and reliable to secure the data and in keeping it safe from hackers [2,
3]. The techniques are achieved through mechanisms of access control, authoriza-
tion, authentication, and confidentiality. Overall, the objective of our project is to
provide a secure platform where user can store their data and information without
having any second thoughts and can secure their data encryption methods [4, 5].

2 � EncryptoX and Cloud

Currently there is a large movement in the cloud computing technology to main-
stream processes and improve the current methods of storing data online. As in the
case with any file sharing, this effort is difficult without an “information at your
fingertips” type of system application. A well-designed database for this is a large
improvement over the current methods of managing files and allowing quick
responses to user requests for accessing their own data [1, 2].

Several problems with the current case file storing management system have
been identified. The current system would benefit from a centralized user record
repository and communication platform in which all user records are kept and from
which the state of access and security is low. In the cloud computing, resources are
shared among all the servers, users, and individuals. So it becomes difficult to keep
a check on the security of the files of users.

S. B. B. Priyadarshini et al.

169

As a result, it somehow becomes easier for a hacker to access, misuse, and
destroy the original form of data. In case of compromise at any cost, the data of
users are compromised. Therefore, there is a need for a robust secure technique for
data security that becomes vital. So we need to come with a more secure technique
which can be done using hybrid cryptography to secure our file storing manage-
ment system.

2.1 � Specifications

Cloud computing is one of the most popular technologies in the world with it being
used in many fields such as defense, healthcare, industries, institutions, etc. in stor-
age of bulk data. The biggest advantage of cloud is that users can access their files
remotely without directly accessing the servers. However, the security of data stored
online have raised concerns over the years; therefore, new techniques are being
developed to keep our files and other vital information secure.

One of the most used technique is the use of hybrid cryptography algorithm. By
implementing hybrid cryptography and metaheuristic so that the system becomes
very secure, even if there is a security breach, the attacker will only access the
encrypted data which is not human readable. Hybrid cryptography utilizes the AES
and RSA algorithms, where the key is encrypted by RSA and the data is encrypted
by AES. The main motto behind this project is to provide an application which uses
hybrid cryptography to keep the user files secure and stop them falling prey into the
hands of hackers and eliminating the man-in-the-middle attack [2, 3].

Once the EncryptoX website is loaded, the user can choose between the “upload”
and “restore” button. If the user clicks on the upload button, then it gets navigated
to the “Upload” page where the user can select a particular file and upload it in the
storage platform, and then it gets navigated to the success page where the user can
download the public key to access the file to restore. If the user clicks on the
“restore” button, then it gets navigated to the restore page where the user then gets
an option to choose between going back to home page or the download key page.
Finally, the user gets navigated to download page and hence can download the file.
Thus successful completion of file storing is done sequentially.

2.2 � Hardware Specification

As it is a computer application, there is a minimum hardware specification required
to run the application smoothly, such as the following:

	 (i)	 Minimum 2 GB of RAM.
	(ii)	 256 of storage space for the application
	(iii)	 Intel core i3/AMD Ryzen 3 or above.

EncryptoX: A Hybrid Metaheuristic Encryption Approach Employing Software Testing…

170

2.3 � Software Specification

Following are the software specifications employed for our proffered software test-
ing Scheme.

	 (i)	 A web browser which supports HTML5 and JavaScript.
	(ii)	 A Python IDE like PyCharm.
	(iii)	 XAMPP server to host the web application.
	(iv)	 Flask virtual environment to run the application.

3 � Analyzing Existing System

Day by day, there is an increase in cyberattacks, and data breach is happening every-
where, and it’s high time that we take a step forward in cybersecurity. This section
mainly deals with the comparison between the existing applications and our appli-
cation. After some thorough research and study, we found that there are many
research papers on this topic and lots of research is going on. But there is no soft-
ware application on this available for public use. Few prototypes are available on the
internet, and there are some ways in which our project is different from the other,
and in this section, we have thoroughly gone through the comparison among other
application [4, 5].

3.1 � Existing System

A user is an entity who has some data to be stored in any file storage system.
Suppose the user wants to store the files on any cloud storage system, first the user
will choose the files to be uploaded, and then the user will upload them on the cloud,
but there are high chances of man-in-the-middle attack where the files of user are
compromised by the hacker even before it is uploaded on the cloud. As there was no
encryption of any type, the hacker can easily access the user files and can use it for
himself, thus making the traditional system flawed. There are certain limitations we
face in the existing system such as the following:

•	 Cloud service providers should make the security of user data as their main
priority.

•	 Service availability failure and the possibility of malicious software and hackers
in the cloud infrastructure.

S. B. B. Priyadarshini et al.

171

3.2 � Proposed Testing System

Currently there is no such system available. There are many theoretical models and
prototype with very limited user interface. Our project provides new model greatly
in terms of user interface and with the encryption that helped in the removal of the
man in the middle attack [1–5] as follows:

	(a)	 We have implemented the encryption and decryption techniques and algorithms
to provide security to our cloud platform.

	(b)	 Secure upload and download of file transfer is proposed here.
	(c)	 Easy and user-friendly website.
	(d)	 Responsive website with secure data storage.

3.3 � Feasibility Study

The project “EncryptoX-Secure Storage System using Hybrid Cryptography” aims
at encrypting the data inside the file such that no new user can see it. Firstly, we
made this approach technically possible by implementing AES and RSA encryption
algorithm technique and cryptography. Secondly, our project will also make a huge
impact on the society as it will be very profitable to technocrats, professionals, and
common people as it is free of cost.

Secondly, our proffered strategy is also legal as it abides with all cyberlaws and
norms. Thirdly, our proposed approach will also support the changes as it will also
successfully encrypt images and videos, and lastly, the project will also be delivered
in time as the file will be uploaded in very less time and also the encrypted file will
be downloaded in a very less time. Recent studies have also ensured that hybrid
encryption technique has been increasing day by day.

4 � Software System Analysis and Design

With the rise in cybersecurity attacks and data breach of many famous companies’
database, it becomes high time that we take some strict actions against it. So in order
to achieve data security, we made EncryptoX [6], a simple web application that
encrypts the files of users and makes it secure against cyberattacks. The user gets a
key after encrypting the files, and only that valid logical key can decrypt and restore
the files into its original form. Therefore while designing this project we have kept
two things in mind:

	A.	 Usability.
	B.	 User interface.

EncryptoX: A Hybrid Metaheuristic Encryption Approach Employing Software Testing…

172

To achieve the abovetwo we had to design the application in such a way that not
only it would be simple to use but also it becomes very intuitive. The back end was
to be made first, for that we used Python and some python libraries and packages,
namely, Flask, Werkzeug, cryptography, and ChaCha20 encryption algorithm.
ChaCha20 encryption and decryption algorithms and codes were available online so
that we directly implemented them in our application code [6].

The back-end codes are divided into many parts, namely, application, the main
application code which calls the functions and other code at the time when snippets
called; encrypter, the encryption code which encrypts the files and returns an
encrypted file and a key; decrypter, the decryption code which decrypts the files
with the help of the key; and restore, which helps to restore the files into its original
form and tools and which has packages and codes required for the application [7].
The user interface is designed using HTML, CSS, and JavaScript. The user interface
is kept very user friendly and intuitive for users so that they don’t face any problem
while using the application [4, 5, 8].

4.1 � Requirement Specification

Two types of specifications are employed here as follows:

4.1.1 � Functional Requirement

The functionality of this project is to encrypt user files so that it can be secured from
cyberattacks and data breaches. When the application is run, it invokes the index
page which has two options—upload or restore. Upload enables the user to encrypt
the files and upload them into any storage system either into system or into any
cloud infrastructure. The files can only be decrypted using the valid logical key, and
if by chance the encrypted files fall prey to any cyberattack, then the hacker will
only get the encrypted file which will not be in human-readable format [7, 8].

	(a)	 Upload: The user will have the option to upload the files into the storage appli-
cation by clicking on this button. When the user clicks on these buttons, he will
be prompted to choose a file which then will be encrypted and stored in the
uploads folder of the storage system, and a key will be generated.

	(b)	 Download Key: The user will download the key which can only decrypt and
restore the files.

	(c)	 Home: This button enables the user to get back to home page.
	(d)	 Restore: When the user clicks on this button, he is to be asked to choose the file

that he wants to decrypt and restore. With the help of the key, the file is decrypted
and restored, and then the user can download the restored file.

S. B. B. Priyadarshini et al.

173

4.1.2 � Nonfunctional Requirements

	(a)	 Scalability: The application is able to perform the desired actions of encryption
and decryption within a few seconds with a hassle-free user experience.

	(b)	 Reliability: EncryptoX uses hybrid encryption techniques, namely, AES for
data and RSA for key, which is one of the most reliable encryption techniques
used for the assurance of privacy of data.

	(c)	 Robustness: The application is quite robust due to its straightforward user
interface and its implementation.

	(d)	 Consistency: The application is consistent throughout the process. The appli-
cation works well or performs well as expected every time.

	(e)	 Usability: This is a web application, and the users must know how to use web
browser and how to run a web application. As the user interface is very user
friendly, the users won’t find any difficulty while using the application.

4.2 � Design Steps and Criteria

The main focus during making of this project was to give the user a hassle-free
experience while using the application. For this, the front end was designed accord-
ingly so that user will find the application very intuitive to use [8, 9].

The first step toward making this project was to design and code the back end.
The back end is completely coded in Python with many Python libraries used like
Flask, cryptography, and WSGI. OOPS concept is used with the application coding
so that the codes run without any problem. The front end is written in HTML, CSS,
and JavaScript, and some theme packages are used to make the front end look better
and user-friendly [10]. There are some design constraints:

	 (i)	 It requires a latest web browser which supports HMTL5 and JavaScript.
	(ii)	 The system on which this application is running should have python installed

along with all the necessary libraries and functions.
	(iii)	 XAMPP server is required to run this application as it’s a web application

which is supposed to run a web server.
	(iv)	 It can also be integrated and run on a cloud server service like AWS to provide

more practical experience, but for that then we have to pay monthly payments
to AWS for hosting and providing other services.

5 � Algorithms and Pseudo Code

The main algorithm used in our application is ChaCha20—Poly1305 encryption.
This algorithm is used to encrypt and decrypt the files of the user. This is one of the
most reliable encryption algorithms available to us. Its pseudo code is as follows:

EncryptoX: A Hybrid Metaheuristic Encryption Approach Employing Software Testing…

174

The basic operation of the ChaCha algorithm is the quarter round. It operates on
four 32-bit unsigned integers, denoted a, b, c, and d.

The operation is as follows (in C-like notation):

	1.	 a += b; d ^= a; d <<<= 16;
	2.	 c += d; b ^= c; b <<<= 12;
	3.	 a += b; d ^= a; d <<<= 8;
	4.	 c += d; b ^= c; b <<<= 7;

where “+” denotes integer addition modulo 2^32, “^” denotes a bitwise Exclusive
OR (XOR), and “<<< n” denotes an n-bit left rotation (toward the high bits).

For example, let’s see the add, XOR, and roll operations from the fourth line with
sample numbers:

a = 0x11111111
b = 0x01020304
c = 0x77777777
d = 0x01234567
c = c + d = 0x77777777 + 0x01234567 = 0x789abcde
b = b ^ c = 0x01020304 ^ 0x789abcde = 0x7998bfda
b = b <<< 7 = 0x7998bfda <<< 7 = 0xcc5fed3c

For a test vector, we will use a ChaCha state that was generated randomly:

Sample ChaCha state

879531e0 c5ecf37d 516461b1 c9a62f8a
44c20ef3 3390af7f d9fc690b 2a5f714c
53,372,767 b00a5631 974c541a 359e9963
5c971061 3d631689 2098d9d6 91dbd320.

We will apply the QUARTERROUND(2,7,8,13) operation to this state. For obvi-
ous reasons, this one is part of what is called a “diagonal round”:

After applying QUARTERROUND(2,7,8,13).

879531e0 c5ecf37d *bdb886dc c9a62f8a
44c20ef3 3390af7f d9fc690b *cfacafd2
*e46bea80 b00a5631 974c541a 359e9963
5c971061 *ccc07c79 2098d9d6 91dbd320.

Note that only the numbers in positions 2, 7, 8, and 13 changed.

S. B. B. Priyadarshini et al.

175

6 � Testing Process

6.1 � Unit Testing

It is the testing of all the units of the application individually to check whether each
unit is free of bugs and giving the desired results or output [11, 12]. Our application
back-end codes are divided into five units or parts, namely, app.py, encrypter.py,
decrypter.py, restore.py, and tools.py. The unit testing was carried out by testing
each unit codes to check whether they are free of bugs and not throwing any excep-
tion [13–16]. While performing the unit testing, all the units came to be error free
with few warnings. The main application program was error free with no warnings.
The other units were also found to be error free with two unit codes throwing three
to four warnings, which was expected due to implementation of different algorithms
and Python packages in the application codes.

6.2 � Integration Testing

This is the testing phase where all the units are combined or connected, and the
main application codes are thoroughly tested. During the integration testing we had
to implement the front end to check whether the codes were working properly or not
[14, 15, 17]. The front end during this testing was developed in basic HMTL with
simple buttons to check the working of the application. Figures 1 and 2 are the
screenshots of the output. Figure 3 shows the screenshot of success stage of unit
testing output.

Fig. 1  Index page unit testing

EncryptoX: A Hybrid Metaheuristic Encryption Approach Employing Software Testing…

176

Fig. 2  Upload page unit
testing

Fig. 3  Success page unit
testing output

7 � Results and Discussion

This section deals with the output of the application. Also the user interface was our
main focus while developing this application. The output of our application depends
on the user’s choice. If the user chooses to upload the file, then the output which we
get is the encrypted file along with the key to decrypt and restore it into its original
form. If the user chooses to restore the file, then he gets the file decrypted and
restored into its original form [3, 16].

7.1 � User Interface

The main focus while making this application was given to the user interface. The
user interface of the application is very intuitive and simple to use so that the user
can have a hassle-free experience while using the application. Figures 4, 5, 6 and 7
illustrate the user interface.

7.2 � Results and Discussion

The output of this application depends on its action chosen by the user. If the
user chooses to upload a file, then it will return the encrypted file along with the
key required to decrypt and restore it into its original form. If the user chooses

S. B. B. Priyadarshini et al.

177

Fig. 4  Index page

Fig. 5  Upload page

to restore the option, then the output will be the decrypted file restored into its
original form.

8 � EncryptoX Facilities

As the technology is changing everyday, our application is also required to evolve
in order to cope up.

EncryptoX: A Hybrid Metaheuristic Encryption Approach Employing Software Testing…

178

Fig. 6  Success page

Fig. 7  Download page

	(a)	 The user sign in–sign out option: There will be sign in and sign out option for
user, so that when not required the user can simply sign out of the application.
This feature will make the application a bit more secure and conventional for
mass use.

	(b)	 A mobile application version: As majority of people use their smartphones to
do their majority of day-to-day work, so it will be more conventional to make
an Android/IOS EncryptoX application so that people can use it more efficiently.

	(c)	 A GUI-based application software: This application is a web application and
requires specific python libraries and virtual environment to run but a fully
develop GUI software which has all the libraries and required function encap-

S. B. B. Priyadarshini et al.

179

sulated just like other regular conventional software which is only required to
install once, and it will take care of rest.

	(d)	 Option to switch between storage system: The user will get the option to
choose a storage system which is registered, such as local storage system, cloud
storage, or even flash drives.

9 � Socioeconomic Impact

Basically, the EncryptoX represents the app for both MAC and windows that per-
mits the encryption file prior to sending it. Its main objective is to protect and secure
the data.

9.1 � Practical Relevance

With the rise in cybercrimes and data breaches, now it’s high time we take serious
and necessary steps to keep our data secure. Users keep their data in different stor-
age systems like their local storage on their devices or on the cloud. The main prob-
lem with all these storage systems is that it stores data in its original form, so if by
chance any hacker hacks the system and gets his hands on the files, they can eas-
ily misuse.

To avoid such attacks we have tried to make and application named EncryptoX,
which can encrypt user data before storing it on any file system and can decrypt and
restore it into its original form with the help of the valid key. This project is very
practical and can be of great use for people to keep their files secure. This is a simple
web application which can run on any computer system with python installed and
by running it on a virtual environment. It’s a very easy-to-use application with an
intuitive user interface. It can easily be used for local file storage system.

9.2 � Global Impact

In the twenty-first century, digitalization is increasing rapidly, and with this increase
there is also a rapid increase in data leaks and data breach. Recently we have seen
that a huge amount of data has been leaked from the Domino’s and Air India’s data-
base. Our data can be only safe through encryption. So our project “EncryptoX
being a Secure Storage System using Hybrid Cryptography” will be a game changer
in the field of encryption and cryptography. The current chapter will make a huge
impact globally by safeguarding the sensitive data of user from unknown users.
Most often it is seen that people do not remember bank account number, email
addresses, passwords, etc. So with our project people can safely store there bank

EncryptoX: A Hybrid Metaheuristic Encryption Approach Employing Software Testing…

180

account number and password in file such that no one can know them. Basically, it
will encrypt all passwords, email addresses, and bank account numbers which are
present in the file.

9.3 � Lifelong Learning

In the modern era, data is the new oil, and many hackers try to steal sensitive data
from the users, which is a great threat. So, we all should take a step forward to pro-
tect our data. In this chapter, we have secured our data through encryption [2, 5]. We
can also secure our data from hackers through many ways such as the following:

Firstly, by using firewall that will avert unauthorized access to the network and
notify the user of intrusion attempts.

Secondly, by installing antivirus software as it provides many features and security
to protect the system by detecting real-time threats to ensure the data becomes safe.

Thirdly, by setting complex passwords—the password must be at least eight charac-
ters and should have combinations of numbers, uppercase and lowercase alpha-
bets, and computer symbols.

Fourthly, by the using two-factor authentication, which hackers will find it difficult
to hack the data as two-factor authentication will act as second layer protection.

Lastly, by clearing browsing history, cookies, and cached files.

10 � Conclusion and Future Work

In this digital modern world where the user data plays a very vital role, we must
keep our files and data secure. Nowadays, with increase in cybercrimes and data
leak, it’s high time that we use applications which are very secure and can keep our
data secure. People have many files and data to store, and sometimes device storage
falls short for the user, so the user many times opts to store their data on cloud sys-
tems to save space on their devices. With the growing technology and faster devel-
opment in the society, we need to advance and enhance the encryption methods. To
keep data secure from hackers, many countries and companies are working on new
techniques and methods. People’s information is a big responsibility; thus the world
is moving forward to digital era.

Hybrid cryptography is a very new technique with many benefits. It’s better than
using a single encryption technique and keeps the data more secure. In today’s digi-
tal world where data is the most precious thing about an individual on the internet,
it’s very important to keep the user data and files secure. In order to achieve this, we
tried to make a metaheuristic application, namely, EncryptoX, which attempts to
fulfill all these criteria for data security. It’s a simple application and easy to use

S. B. B. Priyadarshini et al.

181

with a very intuitive user interface. It’s now time that we as an individual understand
the importance of data and keep it secure from our side rather than relying on the
service providers.

References

1.	Osman, I., & Kelly, J.. (1996). Meta-hueuristics theory and applications. ISBN:
978-1-4613-1361-8, pp. 1–690.

2.	Sharma, M., & Kaur, P. (2021). A comprehensive analysis of nature-inspired meta-heuristic
techniques for feature selection problem. Archives of Computational Methods in Engineering,
28, 1103–1127.

3.	Nick, A., & Lee, G..(2017). Cloud computing principles, systems and applications. ISBN:
978-3-319-54645-2 (pp. 1–378).

4.	https://datatracker.ietf.org/doc/html/rfc7539
5.	https://nevonprojects.com/secure-file-storage-on-cloud-using-hybrid-cryptography/
6.	Reece, B. D., & Ruby, D. (2020). Secure file storage on cloud using hybrid cryptography.

International Journal of Engineering and Technical Research, 8(03).
7.	 Jena, A., Das, A. K., Mohapatra, H., & Prasad, D. (2020). Automated software testing founda-

tions, applications and challenges, ISBN:978-981-15-2455-4 (pp. 1–165).
8.	Ellims, M., & Jackson, K., ISO 9001: Making the right mistakes. SAE technical paper series

2000-01-0714.
9.	Davis, M., & Weyuker, E. J. (1998). Metric-based test data adequacy criteria. Computer

Journal, 13(1), 17–24.
10.	Jorgensen, P. (1995). Software testing a craftsman’s approach. CRC Press.
11.	Lyu, M. R., Huang, Z., Sze, S. K., & Cai, X. (2003). An empirical study on testing and fault

tolerance for software reliability engineering. Proceedings – International Symposium on
Software Reliability Engineering, 2003, 119–130.

12.	Cabe, M., & T. J. (1976). A complexity measure. IEEE Transactions on Software Engineering,
2(4), 202–213.

13.	Richard, D. J., & Thompson, M. C. (1993). An analysis of test data selection criteria using the
relay model of fault detection. IEEE Transactions on Software Engineering, 19(6), 533–553.

14.	Torkar, R., Mankefors, S., Hansson, K., & Jonsson, A. (2003). An exploratory study of com-
ponent reliability using unit testing. In Proceeding 14 international symposium on system reli-
ability engineering (pp. 227–233).

15.	Zhu, H., Hall, P. A. V., & May, J. H. R. (1997). Software unit test coverage and adequacy. ACM
Computing Surveys, 29(4), 366–427.

16.	Voas, J. M., & Miller, K. W. (1995). Software testability: The new verification. IEEE Software,
12, 17–18.

17.	Zhu, H. (1996). A formal analysis of subsume relation between software testing adequacy
criteria. IEEE Transactions on Software Engineering, 22(4), 248–255.

EncryptoX: A Hybrid Metaheuristic Encryption Approach Employing Software Testing…

https://datatracker.ietf.org/doc/html/rfc7539
https://nevonprojects.com/secure-file-storage-on-cloud-using-hybrid-cryptography/

183

A
Artificial neural network (ANN), 85,

157
Automated software testing, 127, 152
Average percentage of faults detected (APFD),

46, 47, 50, 52–56

B
Black-box testing, 33, 69, 70

C
Chip-8, 133–137, 140, 153
Code coverage, 3–5, 31, 33, 36
Cost estimation, 85
Coverage based testing, 97, 98
Coverage criteria, 35–38, 40, 42, 47
Critical paths, 96, 98, 101

D
Defect prediction, 80, 164, 165
Defects, 45, 46, 63, 67, 69–71, 78, 94, 155,

156, 158, 162–165

E
Emulators, 133–153
EncryptoX, 167–181
Error prediction, 80
Evolutionary algorithms (EAs), 91–101,

116, 118

F
Failure prediction, 80
Fault-based testing, 95
Fault prediction, 47, 80, 85, 87
F score, 161, 162, 164
Functional testing, 15, 66, 72

G
Generation, 14, 15, 17, 18, 33, 63, 91–101,

113, 117

I
Index, 86, 133, 160, 162, 163, 172, 175, 177
Integration testing, 3, 67, 93, 153, 175

L
Levels of testing, 68
Lifetime, 111, 115, 116, 118, 122, 123

M
Machine learning, 77–89, 157
Maintainability, 59, 78, 155–165
Maintenance prediction, 162
Meta-heuristic, 92, 105–107, 114–119, 121,

123–126, 133–136, 167–181
MO-BAT, 4
Mutation testing, 10, 11, 13–15, 17, 27,

37, 95, 98
Mutation testing tools (MTTs), 13–27, 52–56

Index

© Springer Nature Switzerland AG 2022
M. Khari et al. (eds.), Optimization of Automated Software Testing Using
Meta-Heuristic Techniques, EAI/Springer Innovations in Communication and
Computing, https://doi.org/10.1007/978-3-031-07297-0

https://doi.org/10.1007/978-3-031-07297-0

184

N
Non-functional testing, 46, 66, 68
NSGA-II, 2, 4, 6–8, 10

O
Optimization, 2, 4, 6–8, 11, 14, 46, 47, 86,

91–101, 106, 111–115, 117–122, 124,
125, 127, 133–135, 167

P
Path testing, 15, 96–97, 101
Portability, 137, 153
Program counter, 140–142, 146, 147, 149,

150

R
Random forest, 158, 162
Ranorex, 72
RBST, 92
Regression testing, 2, 46, 47, 68, 94
Reliability, 68, 69, 77, 78, 80, 81, 84–87, 89,

105, 137, 153, 157, 161, 173
Reusability, 137, 153

S
Sahi, 72
Scalability, 25, 38, 94, 105, 137, 173
Search-based software testing (SBST), 92, 117
Selenium, 71, 72
Soft computing, 80, 89
Software, 1–11, 25, 34, 35, 37, 45–47, 57,

59–61, 63, 64, 66–71, 73, 74, 77, 78,
80, 85–87, 89, 91–94, 99, 101, 106,

116, 117, 153, 155–165,
170–173, 178–180

Software development life cycle (SDLC), 2,
31, 59, 63, 73, 87, 91, 92

Software reliability, 77–89
Software reliability prediction, 77, 80–82,

84–87, 89
Software testing (ST), 2, 13, 15, 31, 33, 34,

41, 45, 46, 59–74, 86, 91, 93, 101, 106,
116, 127, 133–153, 167–181

Software testing life cycle, 61, 62, 66
State based faults, 32, 33, 35, 42
State-based testing (SBT), 31–35, 42, 117
State chart diagrams, 31, 34–36, 38–42
Static metrics, 56

T
Test case generation, 14, 35, 39, 98–100
Test case optimization, vi, vii, 4, 98–100, 127
Test case prioritization (TCP), 45–57
TestComplete, 72
Test data, 13–15, 17, 27, 73, 91–101, 106,

117, 158
Testing methodologies, 62, 117
Testing process, 17, 64, 77, 96, 162, 175–176
TestingWhiz, 72
Test suit, 1–11, 48

U
Unit testing, 33, 35, 66, 93, 175, 176

W
White box testing, 4, 5, 31, 46, 70, 95, 98, 162
Wireless sensor network (WSN), 105–127

Index

	Preface
	Contents
	NGA-II-Based Test Suite Minimization in Software
	1 Introduction
	2 Background
	2.1 What Is Test Suite?
	2.2 Minimization of Test Suite
	2.3 Partitioning
	2.4 Optimization Algorithms

	3 Defects4J
	3.1 About Defects4J Repository

	4 Code Coverage
	4.1 Statement Coverage
	4.2 Branch Coverage

	5 Proposed Approach
	5.1 Workflow of Approach
	5.2 Optimization NSGA-II Algorithm
	5.3 Performing Coverage and Mutation

	6 Results and Analysis
	6.1 Result Obtained
	6.1.1 Graphs

	6.2 Errors Occurred

	7 Conclusion and Future Work
	References

	Comparison and Validation of Mutation Testing Tools Based on Java Language
	1 Introduction
	2 Related Work
	3 Formulation of Research Questions
	4 Empirical Data Collection
	5 Analysis of Results
	6 Conclusions and Future Work
	References

	State Traversal: Listen to Transitions for Coverage Analysis of Test Cases to Drive the Test
	1 Introduction
	2 Background Study
	3 Related Work
	4 Framework for Generating Test Cases
	5 Case Study Implementation
	6 Conclusion with Future Work
	References

	A Heuristic-Based Test Case Prioritization Algorithm Using Static Metrics
	1 Introduction
	2 Related Work
	3 The Proposed Prioritization Algorithm (StatPriori)
	4 Experiment and Result
	4.1 Result
	4.1.1 Store Project
	4.1.2 Grade Book
	4.1.3 Sudoku Program
	4.1.4 STACK

	5 Conclusion
	References

	A Literature Review on Software Testing Techniques
	1 Introduction
	2 Review Methodology
	2.1 Planning
	2.1.1 Searching Process
	2.1.2 Formulation of Research Questions

	2.2 Conducting Phase
	2.2.1 Excluding Unrelated Study
	2.2.2 Distribution of Papers

	2.3 Reporting of Research Questions

	3 Conclusion
	References

	A Systematic Literature Review of Predicting Software Reliability Using Machine Learning Techniques
	1 Introduction
	2 Methodology for the Review
	2.1 Research Questions
	2.2 Search Scheme and Selection Analysis
	2.3 Quality Evaluation Criteria
	2.4 Data Extraction
	2.5 Data Synthesis

	3 Discussion on Some Selected Article
	4 Results
	4.1 Explanation of Primary Studies
	4.1.1 Year of Publications and Source

	5 Conclusion
	References

	Evolutionary Algorithms for Path Coverage Test Data Generation and Optimization: A Review
	1 Introduction
	2 Basic Concepts
	2.1 Testing Levels
	2.1.1 Unit Testing
	2.1.2 Integration Testing
	2.1.3 System Testing
	2.1.4 Acceptance Testing
	2.1.5 Regression Testing

	2.2 Black Box Testing
	2.3 White Box Testing
	2.3.1 Fault-Based Testing
	2.3.2 Coverage-Based Testing

	2.4 Path Testing
	2.4.1 Critical Path
	2.4.2 Control Flow Graph

	3 Related Work
	3.1 Test Case Generation and Optimization Using GA

	4 Conclusion
	References

	A Survey on Applications, Challenges, and Meta-Heuristic-Based Solutions in Wireless Sensor Network
	1 Introduction
	2 Research Methodology
	3 Different Types of WSN
	3.1 Mobile WSN
	3.2 Multimedia WSN
	3.3 Underwater WSN
	3.4 Underground WSN
	3.5 Terrestrial WSN
	3.6 Application and Challenges of WSN

	4 Meta-Heuristic
	4.1 Genetic Algorithm
	4.2 Particle Swarm Optimization
	4.3 Ant Colony Optimization
	4.4 Artificial Bee Colony
	4.5 Bat Algorithm

	5 Meta-Heuristic Techniques Used in WSN: Literature Review
	6 Work Done in WSN Using Meta-Heuristic
	6.1 Artificial Bee Colony
	6.2 Ant Colony Optimization
	6.3 Bat Algorithm
	6.4 Cuckoo Algorithm

	7 Metaheuristic on WSN Three Major Challenges
	8 Statistical Analysis
	9 Conclusion
	References

	myCHIP-8 Emulator: An Innovative Software Testing Strategy for Playing Online Games in Many Platforms
	1 Introduction to CHIP-8 and Metaheuristics
	1.1 Motivation
	1.2 CHIP-8 as a Metaheuristic Approach

	2 Related Work
	3 Proposed Approach Employing Software Testing (ST)
	3.1 mychip-8

	4 Instructions Used
	5 Result Discussion and Debugging Issues
	6 Conclusions
	References

	Defects Maintainability Prediction of the Software
	1 Introduction
	2 Literature Survey
	3 Pre-requisite Knowledge
	3.1 Random Forest
	3.2 K-Fold Cross Validation
	3.3 Software Metrics
	3.4 Performance Assessment Measures
	3.5 Need of Predictability

	4 Proposed Methodology
	4.1 Datasets
	4.2 Proposed Method

	5 Results
	6 Conclusion
	References

	EncryptoX: A Hybrid Metaheuristic Encryption Approach Employing Software Testing for Secure Data Transmission
	1 Metaheuristics and Background Study
	1.1 Introducing EncryptoX
	1.2 Objective

	2 EncryptoX and Cloud
	2.1 Specifications
	2.2 Hardware Specification
	2.3 Software Specification

	3 Analyzing Existing System
	3.1 Existing System
	3.2 Proposed Testing System
	3.3 Feasibility Study

	4 Software System Analysis and Design
	4.1 Requirement Specification
	4.1.1 Functional Requirement
	4.1.2 Nonfunctional Requirements

	4.2 Design Steps and Criteria

	5 Algorithms and Pseudo Code
	6 Testing Process
	6.1 Unit Testing
	6.2 Integration Testing

	7 Results and Discussion
	7.1 User Interface
	7.2 Results and Discussion

	8 EncryptoX Facilities
	9 Socioeconomic Impact
	9.1 Practical Relevance
	9.2 Global Impact
	9.3 Lifelong Learning

	10 Conclusion and Future Work
	References

	Index

